深度学习笔记(吴恩达网课学习笔记之贰)

这篇博客探讨了在深度学习中向量化的重要性,特别是在梯度下降法中的应用。作者指出,向量化可以显著提高代码效率,尤其是在处理大数据集时。文章通过逻辑回归的例子解释了如何避免使用for循环,并介绍了Python中的Numpy库以及广播机制。此外,还分享了一些避免广播引起的意外行为和优化代码的技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归的梯度下降法

 使用计算图来计算逻辑回归的梯度下降算法有点大材小用了

 一步步求导下去

 

 也就是说应用此方法在逻辑回归上你需要编写两个for循环。第一个for循环是一个小循环遍历 m 个训练样本,第二个for循环是一个遍历所有特征的for循环
我想在先于深度学习的时代,也就是深度学习兴起之前,向量化是很棒的。可以使你有时候加速你的运算,但有时候也未必能够。但是在深度学习时代向量化,摆脱for循环已经变得相当重要。因为我们越来越多地训练非常大的数据集,因此你真的需要你的代码变得非常高效。所以在接下来的几个视频中,我们会谈到向量化,以及如何应用向量化而连一个for循环都不使用。所以学习了这些,我希望你有关于如何应用逻辑回归,或是用于逻辑回归的梯度下降,事情会变得更加清晰。当你进行编程练习,但在真正做编程练习之前让我们先谈谈向量化。然后你可以应用全部这些东西,应用一个梯度下降的迭代而不使用任何for循环

向量化

向量化是非常基础的去除代码中for循环的艺术,在深度学习安全领域、深度学习实践中,你会经常发现自己训练大数据集,因为深度学习算法处理大数据集效果很棒,所以你的代码运行速度非常重要,否则如果在大数据集上,你的代码可能花费很长时间去运行,你将要等待非常长的时间去得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值