摘要:本文主要研究的是少镜头目标检测(FSOD)和实例分割(FSIS),这需要一个模型能够快速适应具有少量标记实例的新类。由于缺少标签问题,现有方法严重存在偏见分类,这在实例级少射场景中自然存在,并且是由我们首次正式提出的。我们的分析表明,大多数FSOD或FSIS模型的标准分类头需要解耦以减轻偏差分类。因此,我们提出了一种令人尴尬的简单但有效的方法,将标准分类器解耦为两个头。然后,这两个单独的头能够独立寻址清晰的正样本和由缺失标签引起的嘈杂的负样本。这样,模型可以有效地学习新的类,同时减轻了有噪声的负样本的影响。在没有任何额外的计算成本和参数的情况下,我们的模型在FSOD和FSIS任务的PASCAL VOC和MS-COCO基准测试中始终优于其基线和最先进的水平。
Decoupling Classifier to Mitigate the Bias Classification:
为了区别处理正样本和负样本,我们将标准分类器解耦为两个头像,即正(前景)头像和负(背景)头像,其公式为:
这里,正面正面和负面正面分别负责正面和负面的样本。考虑到正向样本(前景)的标签是准确的,我们可以对所有正向实