sklearn中的Linear_model的score函数讲解

博客指出在特定情境下,X代表test集中的属性,y代表test集中的标签,强调y并非预测出的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注意这里的X是test集中的属性,y是test集中的标签(而不是预测出的结果!!!)

### sklearn.linear_model 模块的功能与使用 `sklearn.linear_model` 是 scikit-learn 中用于实现线性模型的核心模块,提供了多种算法来解决回归和分类问题。以下是该模块的主要功能及其常见使用的详细介绍。 #### 1. 常见的线性模型类 `sklearn.linear_model` 提供了许多不同的线性模型,适用于不同场景下的机器学习任务: - **Logistic Regression**: `LogisticRegression` 类可以用来构建逻辑回归分类器[^1]。它通过最大化似然估计拟合数据,并支持正则化选项(L1 或 L2 正则化)。其主要用途在于二分类或多分类问题。 - **Perceptron**: `Perceptron` 是一种简单的神经网络模型,主要用于二元分类任务[^2]。它的核心思想是最小化错误率并通过梯度下降调整权重参数。它可以设置多个超参数,如惩罚项 (`penalty`) 和学习速率 (`eta0`) 等。 - **Linear Regression (普通最小二乘法)**: 这是一个基本的线性回归模型,旨在找到最佳拟合直线以预测连续型变量的目标值。目标函数可以通过矩阵运算求解或优化方法得到[^4]。 #### 2. 主要功能概述 这些模型通常具有以下共同特性: - 支持正则化:许多模型允许指定正则化强度(`alpha`),以及选择 L1/L2 的组合比例(`l1_ratio`)。 - 自动收敛检测:部分模型提供早期停止机制(`early_stopping`),当验证集上的性能不再改善时会提前终止训练。 - 并行计算能力:某些模型可通过多核并行加速处理大量数据(`n_jobs` 参数控制并发数)。 #### 3. 示例代码展示 下面分别给出两个常用模型的具体实例——逻辑回归和感知机。 ##### (1)逻辑回归示例 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 加载数据集 data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) # 创建逻辑回归模型 clf = LogisticRegression(max_iter=200) clf.fit(X_train, y_train) # 预测与评估 predictions = clf.predict(X_test) print(f'Accuracy: {accuracy_score(y_test, predictions):.2f}') ``` ##### (2)感知机示例 ```python from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import Perceptron from sklearn.metrics import classification_report # 合成数据集 X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, flip_y=0.05, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练感知机模型 perceptron = Perceptron(random_state=42) perceptron.fit(X_train, y_train) # 输出报告 y_pred = perceptron.predict(X_test) print(classification_report(y_test, y_pred)) ``` #### 4. 学习资源推荐 对于初学者来说,可以从官方文档入手,逐步掌握理论知识与实践技巧[^3]。此外,还可以参考一些在线教程或者书籍,深入了解各种模型背后的数学原理及应用场景。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水木流年追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值