前段时间刷leetcode,时隔12年重新刷了一遍归并排序的题目(上一次是读大学的时候)。归并排序属于典型的分治思想的算法。每层递归有三个步骤
- 分解(Divide):将n个元素分成个含n/2个元素的子序列。
- 解决(Conquer):用合并排序法对两个子序列递归的排序。
- 合并(Combine):合并两个已排序的子序列已得到排序结果。
使用递归算法的归并排序代码demo
public class SortArray {
int[] tmp;
public int[] sortArray(int[] nums) {
tmp = new int[nums.length];
mergeSort(nums, 0, nums.length - 1);
return nums;
}
private void mergeSort(int[] nums, int left, int right) {
if (left >= right) {
return;
}
int middle = (left + right) / 2;
mergeSort(nums, left, middle);
int newLeft = middle + 1;
mergeSort(nums, newLeft, right);
int i = left, j = newLeft;
int k = 0;
while (i <= middle && j <= right) {
if (nums[i] < nums[j]) {
tmp[k++] = nums[i++];
} else {
tmp[k++] = nums[j++];
}
}
while (i <= middle) {
tmp[k++] = nums[i++];
}
while (j <= right) {
tmp[k++] = nums[j++];
}
for (i = 0; i < k; i++) {
nums[left + i] = tmp[i];
}
}
}
写完后,想到这个程序仅仅利用到了一个cpu核心,如果数据量很大的情况下,会造成计算资源的浪费。这个需要计算多个子任务的分治算法,明显可以用Fork/Join框架提速。于是改写了一版。当数据量小于1024个的时候不再进行切割,否则任务太多,提速效果十分差。当小于1024个的时候,偷懒用了工具库的快排。源码地址:https://github.com/bruce256/LeetCodeOJ/blob/master/src/main/java/divideAndConquer/SortArrayTask.java
public class SortArrayTask extends RecursiveTask<int[]> {
public static final int THRESHOLD = 1024;
int[] nums;
int left;
int right;
int[] tmp;
public SortArrayTask(int[] nums, int[] tmp, int left, int right) {
this.nums = nums;
this.left = left;
this.right = right;
this.tmp = tmp;
}
@Override
protected int[] compute() {
if (right - left + 1 <= THRESHOLD) {
Arrays.sort(nums, left, right + 1);
return null;
}
int middle = (left + right) / 2;
// 当前任务纳入计算队列
SortArrayTask leftSortArrayTask = new SortArrayTask(nums, tmp, left, middle);
leftSortArrayTask.fork();
int newLeft = middle + 1;
SortArrayTask rightSortArrayTask = new SortArrayTask(nums, tmp, newLeft, right);
rightSortArrayTask.fork();
// 等待任务计算结束,再做这个语句后的事情
leftSortArrayTask.join();
rightSortArrayTask.join();
int i = left, j = newLeft;
int k = 0;
while (i <= middle && j <= right) {
if (nums[i] < nums[j]) {
tmp[k++] = nums[i++];
} else {
tmp[k++] = nums[j++];
}
}
while (i <= middle) {
tmp[k++] = nums[i++];
}
while (j <= right) {
tmp[k++] = nums[j++];
}
for (i = 0; i < k; i++) {
nums[left + i] = tmp[i];
}
return nums;
}
public static void main(String[] args) {
int[] array = {10000, 100000, 1000000, 10000000, 100000000};
for (int num : array) {
compare(num);
}
}
private static void compare(int num) {
int[] nums = new int[num];
int[] tmp = new int[num];
Random random = new Random();
for (int i = 0; i < nums.length; i++) {
nums[i] = random.nextInt();
}
System.out.println(nums.length + " numbers \t" + Runtime.getRuntime().availableProcessors() + " cpus");
ForkJoinPool forkJoinPool = new ForkJoinPool();
SortArrayTask task = new SortArrayTask(nums, tmp, 0, nums.length - 1);
long start = System.currentTimeMillis();
Future<int[]> result = forkJoinPool.submit(task);
try {
int[] r = result.get();
long duration = System.currentTimeMillis() - start;
System.out.println("fork/join time cost: \t" + duration + " ms");
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
SortArray test = new SortArray();
for (int i = 0; i < nums.length; i++) {
nums[i] = random.nextInt();
}
start = System.currentTimeMillis();
int[] array = test.sortArray(nums);
long duration = System.currentTimeMillis() - start;
System.out.println("single thread time cost: \t" + duration + " ms");
}
}
我的2015款MBP是i7 4核心8线程,跑了10000, 100000, 1000000, 10000000, 100000000个数据对别单线程和多线程版本,运行结果
10000 numbers 8 cpus
fork/join time cost: 5 ms
single thread time cost: 4 ms
100000 numbers 8 cpus
fork/join time cost: 29 ms
single thread time cost: 29 ms
1000000 numbers 8 cpus
fork/join time cost: 80 ms
single thread time cost: 142 ms
10000000 numbers 8 cpus
fork/join time cost: 235 ms
single thread time cost: 1725 ms
100000000 numbers 8 cpus
fork/join time cost: 2284 ms
single thread time cost: 17275 ms
换2021款的14寸mbp,10核心的M1PRO芯片,16GB内存,运行
10000 numbers 10 cpus
fork/join time cost: 5 ms
single thread time cost: 1 ms
100000 numbers 10 cpus
fork/join time cost: 32 ms
single thread time cost: 20 ms
1000000 numbers 10 cpus
fork/join time cost: 81 ms
single thread time cost: 94 ms
10000000 numbers 10 cpus
fork/join time cost: 98 ms
single thread time cost: 1035 ms
100000000 numbers 10 cpus
fork/join time cost: 1041 ms
single thread time cost: 11769 ms
2023款16寸mbp, M2PRO,16GB内存
10000 numbers 12 cpus
fork/join time cost: 4 ms
single thread time cost: 2 ms
100000 numbers 12 cpus
fork/join time cost: 11 ms
single thread time cost: 18 ms
1000000 numbers 12 cpus
fork/join time cost: 75 ms
single thread time cost: 85 ms
10000000 numbers 12 cpus
fork/join time cost: 80 ms
single thread time cost: 947 ms
100000000 numbers 12 cpus
fork/join time cost: 824 ms
single thread time cost: 10920 ms
总结
- 当数据量较小时,由于CPU上下文切换,导致并行还不如串行快。当数据量较大时,提速明显。
- 当数据量达到1亿,并行提速比能超过cpu的核心数,应该是当数据量小于1024时使用的快排导致。当数据十分随机的时候,快排能达到O(n)的复杂度。
思考题:快排能不能用fork/join提速,堆排序呢?