(Few-shot Detection)Review: Comparison Network for one-shot Conditional object detection

本文探讨了One-shot Learning在条件检测任务中的应用,通过引入贝叶斯条件概率理论,提出一种新的网络模型——条件RPN(C-RPN),该模型在测试阶段无需更新网络参数,克服了以往方法的遗忘问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepinScreenshot_select-area_20191210165519.png

本篇文章思路比较简单,作者认为,One-shot Learning只检测与query image相似的目标,是一种有条件的检测任务,适合引入贝叶斯条件概率理论。

网络的大致模型:

DeepinScreenshot_select-area_20191210165529.png

(a) 表示以前做One-shot conditional detection任务的常用做法,采用selective windows设计一个固定的metric 方法;(b)表示LSTD的做法,对RPN和分类器都采用features来做fine-tune;(c)OSCD的思想是,改变RPN为条件RPN,bbx和分类都是条件生成

这种做法,作者认为有三个好处:

  • class agnostic

    只计算原图和query image的相似性,并不关心query image的类别;

  • training-free

    在测试阶段不需要更新网络参数

  • overcome forgetting

    由于是metric learning,所以训练后的参数是固定的

网络的具体模型:

DeepinScreenshot_select-area_20191210173342.png

先采用一个Siamese network进行特征采样,然后将两个特征融合输入C-RPN中计算ROI的相似度和bbox,再把相似的regoin用作C-Classifier做相似度计算和bbox计算

用于复现的话,可以看下面连个伪代码:

DeepinScreenshot_select-area_20191210175046.png

DeepinScreenshot_select-area_20191210175051.png

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值