开发技术
前端:vue.js、element-ui、echarts
后端:springboot、mybatis
大数据:spark、hadoop
数据库:mysql关系型数据库、neo4j图数据库
算法:协同过滤推荐算法、MLP深度学习模型、SVD神经网络混合推荐算法、lstm模型、KNN、CNN、Sklearn、K-Means
第三方平台:百度AI、阿里云短信、支付宝沙箱支付
爬虫:Python chrome-driver
创新点
Spark大屏统计可视化
赛事热度预测(KNN、CNN、Sklearn、K-Means)
4种推荐算法(协同过滤基于用户、基于物品、MLP、SVD、知识图谱推荐)
赛事评论lstm情感分析
模拟沙箱支付购买赛事门票
短信验证码修改密码
百度AI识别身份证
Python爬虫
知识图谱
…10-20种创新点
爬虫代码实现
def getLink(baseurl):
html = requests.get(baseurl, headers=hea)
html.encoding = 'utf8'
soup = BeautifulSoup(html.text, 'html.parser')
for item in soup.select('div.content_list > ul > li'):
# 对不符合的数据进行清洗
if (item.a == None):
continue
data = []
type = item.div.text[1:3] # 类型
link = item.div.next_sibling.next_sibling.a['href']
data.append(type)
data.append(link)
links.append(data)
if __name__ == '__main__':
main()
spark分析代码实现
package com.bigdata.spark.reducebykey_sort
import org.apache.spark.{SparkConf, SparkContext}
/**
* @program: spark-api-demo
* @description: 类作用描述
* @author: 小毕
* @company: 清华大学深圳研究生院
* @create: 2019-09-02 18:00
*/
object ReduceByKeySortRddDemo {
def main(args: Array[String]): Unit = {
val conf=new SparkConf()
.setAppName("MapFilterApp")
.setMaster("local")
val sc=new SparkContext(conf)
val rdd1=sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2), ("shuke", 1)))
val rdd2=sc.parallelize(List(("jerry", 2), ("tom", 3), ("shuke", 2), ("kitty", 5)))
val rdd3=rdd1.union(rdd2)
//按key进行聚合
val rdd4=rdd3.reduceByKey(_+_)
rdd4.collect.foreach(println(_))
//按value的降序排序
val rdd5=rdd4.map(t=>(t._2,t._1)).sortByKey(false).map(t=>(t._2,t._1))
rdd5.collect.foreach(println)
}
}
实现效果图
演示
计算机毕业设计吊打导师Hadoop+Spark知识图谱体育赛事推荐系统 体育赛事数据分析 体育赛事可视化 体育赛事大数据 机器学习 大数据毕业设计 大数据毕设