Redis从理论到实战:使用Redis实现商铺查询缓存(逐步分析缓存更新策略)

本文详细介绍了Redis缓存的基本概念、作用,以及在实际业务中如何添加商户缓存。针对缓存更新策略,文章探讨了内存淘汰、超时剔除和主动更新等策略,并提出了在更新数据时应先更新数据库再删除缓存以保证数据一致性。最后,通过代码示例展示了查询和更新操作的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


加油加油,不要过度焦虑(#^.^#)

一、什么是缓存

缓存就是数据交换的缓冲区,是存贮数据的临时地方,一般读写性能较高
我们可以在很多地方做缓存,比如浏览器缓存、应用层缓存、数据库缓存等等
在这里插入图片描述


二、缓存的作用

  • 我们可以使用缓存,降低后端负载;
  • 使用缓存,可以提高读写效率,降低响应时间。

三、添加商户缓存

思路分析:

  • 首先从Redis中查询数据是否存在:如果存在,则返回数据;如果不存在,则访问数据库;
  • 接着从数据库中查询数据是否存在:如果存在,则从数据库中返回数据并写入redis缓存中;如果不存在,则提示用户不存在。

代码实现:

	//controller层
    @GetMapping("/{id}")
    public Result queryShopById(@PathVariable("id") Long id) {
        return shopService.queryShopById(id);
    }
	//service层
    @Autowired
    private ShopMapper shopMapper;
    @Autowired
    private StringRedisTemplate redisTemplate;
    @Override
    public Result queryShopById(Long id) {
        String key = CACHE_SHOP_KEY + id;
        String shopCache = redisTemplate.opsForValue().get(key);
        //如果在缓存中查询到商户,则返回数据给前端
        if (StrUtil.isNotBlank(shopCache)) {
            Shop shop = JSONUtil.toBean(shopCache, Shop.class);
            System.out.println("shopCache" + shopCache);
            return Result.ok(shop);
        }
        //不存在则根据id在数据库中查找
        Shop shop = shopMapper.selectById(id);
        if (shop == null) {
            return Result.fail("店铺不存在");
        }
        //店铺存在,写入缓存
        redisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop));
        return Result.ok(shop);
    }

整体思路如下:

在这里插入图片描述


四、分析缓存更新策略

  • 刚才的代码在更新数据方面存在着一些问题,所以来一起讨论讨论redis的缓存更新策略。

Redis有三种缓存更新策略:

内存淘汰超时剔除主动更新
说明不需要自己维护,利用redis的内存淘汰机制,当内存不足时自动淘汰部分数据。下次查询时更新缓存给缓存数据添加ttl(过期)时间,到期后自动删除缓存。下次查询时更新缓存编写业务逻辑,在修改数据库的同时,更新缓存
一致性一般
维护成本

业务场景的使用:

业务场景低一致性需求高一致性需求
使用内存淘汰机制使用主动更新,并以超时剔除作为兜底方案

对于商户查询的缓存,这里使用的是主动更新策略,而对于主动更新策略的选择,又有三种方案,这里采用的是方案一:

方案一由缓存的调用者,在更新数据库的同时更新缓存
方案二缓存与数据库整合为一个服务,由服务来维护一致性。调用者调用该服务,无需关心缓存一致性问题
方案三调用者只操作缓存,由其它线程异步的将缓存数据持久化到数据库,保证最终一致

方案拿捏了,在操作缓存和数据库时,我们还需要考虑三个问题:

1、删除缓存还是更新缓存?

如果采用更新缓存,那么每次更新数据库时都会更新缓存,无效写操作较多,所以我们不采用;选择删除缓存,在更新数据库时让缓存失效,等到查询时再更新缓存。

2、如何保证缓存与数据库的操作同时成功或失败?

单体系统:将缓存与数据库操作放在一个事物
分布式系统:利用TCC等分布式事物方案

3、先操作缓存还是先操作数据库?

在这里插入图片描述

  • 如果先删除缓存再操作数据库,如图所示,在线程1删除缓存开始更新数据库时,线程2进来了,此时数据库还未更新,那么线程2写入的缓存就不是数据库更新后的数据
  • 如果先操作数据库再删除缓存,如图所示,在线程1查询数据库并写入缓存时,线程2进来了,此时线程2更新数据库并删除缓存,那么线程1写入的缓存也就不是数据库更新后的数据
  • 但是由于后者在写入缓存的时间低于数据库更新的时间,所以第二种选择更好,发生数据不同步的概率更低!

小总结:

  • 对于读操作:缓存命中则直接返回;缓存未命中则查询数据库,并写入缓存,设定超时时间。
  • 对于写操作:先写数据库,然后再删除缓存;要确保数据库与缓存操作的原子性。

代码实现:

  • 根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间。
  • 根据id修改店铺时,先修改数据库,再删除缓存。

service层代码:

	//查询商户
	@Override
    public Result queryShopById(Long id) {
        String key = CACHE_SHOP_KEY + id;
        String shopCache = redisTemplate.opsForValue().get(key);
        //如果在缓存中查询到商户,则返回数据给前端
        if (StrUtil.isNotBlank(shopCache)) {
            Shop shop = JSONUtil.toBean(shopCache, Shop.class);
            return Result.ok(shop);
        }
        //不存在则根据id在数据库中查找
        Shop shop = shopMapper.selectById(id);
        if (shop == null) {
            return Result.fail("店铺不存在");
        }
        //店铺存在,写入缓存,过期时间设置为30分钟
        redisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
        return Result.ok(shop);
    }
    //更新商户
    @Override
    @Transactional
    public Result updateShop(Shop shop) {
        Long shopId = shop.getId();
        if (shopId == null) {
            return Result.fail("店铺id不能为空");
        }
        //先更新数据库
        shopMapper.updateById(shop);
        //再删除缓存
        redisTemplate.delete(CACHE_SHOP_KEY + shopId);
        return Result.ok();
    }

controller层代码:

    /**
     * 根据id查询商铺信息
     * @param id 商铺id
     * @return 商铺详情数据
     */
    @GetMapping("/{id}")
    public Result queryShopById(@PathVariable("id") Long id) {
        return shopService.queryShopById(id);
    }
    /**
     * 更新商铺信息
     * @param shop 商铺数据
     * @return 无
     */
    @PutMapping
    public Result updateShop(@RequestBody Shop shop) {
        return shopService.updateShop(shop);
    }

到此结束,有什么疑问可以一起讨论~

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是一棵卷心菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值