1、项目概况
1.1 背景和动机
建筑能源性能的问题现在已经成为建筑业主极为关注的问题,因为这直接转化为成本。根据美国能源部的数据,建筑物消耗了美国全部能源的约40%。一些州和市政府采取了建筑节能目标,以减少城市及区域乃至全球的空气污染和气候变化。
本项目使用五种机器学习模型,对哈佛大学校园建筑物的天气数据、时间数据和历史能源消耗数据进行预测未来能源消耗量。这些建筑物安装了分表和传感器,以测量三种类型能源的每小时和每天的消耗量:电力、冷水和蒸汽。
机器学习模型能够生成准确的能源消耗预测结果,并且可供设施经理、公用事业公司和建筑监管项目使用,以实施节能政策。对于大学设施而言,如果他们能够预测所有校园建筑物的能源使用情况,他们可以提前制定计划,优化冷却机、锅炉和能量储存系统的运行。
1.2 相关工作
我们不是第一个进行这种研究的国家。有很多关于这个话题的论文。例如,
我们想尝试不同的机器学习方法,并在哈佛的建筑中实现这些方法。
1.3 项目目标/初始问题
本项目的主要目标是利用时间和天气,根据历史数据预测建筑的能源需求。 我们正在寻求易于实现的模型与最小的输入要求和高准确度。这些模型将使设施、智能电网和建筑调试项目的管理者受益。
对于大学设施来说,如果他们能够预测所有校园建筑的能源使用情况,他们就可以提前制定计划,以优化冷冻机、锅炉和储能系统的运行。 该模型将产生准确的能源需求预测,公用事业公司可以利用它来决定未来生产的最佳电量,并使成本最小化。在建筑调试过程中,工程师需要对节能措施实施后的节能效果进行验证。然而,在更改之前和之后,很难有足够的具有相同条件的数据点。因此,工程师需要插值和/或外推数据。这也是本研究的一个重要应用。
我们在整个项目过程中都坚持这个问题。在我们的项目提案中,我们考虑在更多的建筑上测试我们的方法,并使用数据进行一些故障检测。但是数据清理的时间比我们想象的要长。因此,我们决定将预测任务集中在一栋建筑上。
Reference
一个完整的机器学习项目实战代码+数据分析过程:哈佛大学能耗预测项目
Part 1-3 Project Overview, Data Wrangling and Exploratory Analysis-DEC10
Prediction of Buildings Energy Consumption