Pytorch框架之tensor的gpu状态查看以及设备号

该博客介绍了如何使用Pytorch检查tensor是否在GPU上以及获取其存放设备的方法,包括利用is_cuda属性和device对象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensor的gpu相关的属性

                         QQ:3020889729                                                                                 小蔡

is_cuda

查看当前数据(tensor)是否存放在GPU上

'''
	当前tensor未放在gpu上存放,所以is_cuda属性的值为False
	ps: 如果放在gpu上,则输出True
'''
tensors = torch.tensor([1, 2, 3])
print(tensors.is_cuda)
CodePrint
tensor.is_cudaTrue or False

在这里插入图片描述

device

查看当前数据存放设备

'''
	数据默认存放在cpu上--此时返回cpu
	如果将数据放在gpu上--则返回'cuda:x' 或 设备号
'''
tensors = torch.tensor([1, 2, 3])
print(tensors.device)
CodePrint
tensor.device‘cpu’ or ‘cuda:x’

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NULL not error

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值