BEVFormer 论文学习

BEVFormer是一个用于自动驾驶的3D视觉感知框架,通过Transformer结构融合多相机图像信息,解决单目方法的局限性。它利用时间自注意力和空间交叉注意力模块,提高了目标检测和分割的准确性,特别是在处理动态物体和遮挡目标时表现突出。BEVFormer在nuScenes测试集上达到了与LiDAR方法相当的性能,证明了其有效性和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 解决了什么问题?

3D 视觉感知任务,包括基于多相机图像的 3D 目标检测和分割,对于自动驾驶系统非常重要。与基于 LiDAR 的方法相比,基于相机图像的方法能够检测到更远距离的目标,识别交通信号灯、交通标识等信息。有一些方法使用单目画面,然后进行跨相机的后处理操作;这类方法的缺点就是各图像是分开处理的,无法取得跨相机的画面信息,因而效果和效率都比较差。

与单目方法相比,BEV 是表示周围环境的常用方法,它能清晰呈现目标的位置和大小,适合自动驾驶感知和规划任务。但现有的基于 BEV 的检测方法所提供的 BEV 特征要么不够鲁棒,无法准确地预测 3D 目标;要么深度信息不够准确。

人类视觉系统会通过时间信息推理出目标的运动状态与被遮挡物体,但现有的方法很少考虑时间信息。在驾驶过程中,目标移动速度很快,直接使用各时间戳的 BEV 特征,会增加计算成本与干扰信息,因此不是最佳的。

2. 提出了什么方法?

本文提出了 BEVFormer,一个基于 transformer 的 BEV encoder,通过预先定义的网格状 BEV queries 实现信息在时间和空间内的交互。BEVFormer 包括三个部分:

  • 网格形状的 BEV queries,通过注意力机制灵活地融合空间和时间特征;
  • 空间 cross-attention 模块,从多个相机画面聚合空间特征;
  • 时间 self-attention 模块,从历史 BEV 特征提取时间信息,有助于预测运动物体的速度以及被遮挡的目标。

在这里插入图片描述

2.1 整体架构

如上图,BEVFormer 包括 6 个标准的 encoder 层,以及 3 项特殊设计,即 BEV queries、空间 cross-attention 和时间 self-attention。BEV queries 是网格形状的可学习参数,在 BEV 空间内,对多相机的画面利用注意力机制 query 特征。

推理时,在时间戳 t t t,将多相机画面输入进主干网络 ResNet,获取不同相机画面的特征 F t = { F t i } i = 1 N v i e w F_t=\lbrace F_t^i \rbrace_{i=1}^{N_{view}} Ft={Fti}i=1Nview F t i F_t^i Fti是第 t t t时刻、第 i i i个相机画面的特征, N v i e w N_{view} Nview是画面的个数。保留时间戳 t − 1 t-1 t1的 BEV 特征 B t − 1 B_{t-1} Bt1。在每个 encoder 层,首先使用 BEV queries Q Q Q,通过时间 self-attention 对 BEV 特征 B t − 1 B_{t-1} Bt1查询时域信息。然后通过空间 cross-attention 使用 Q Q Q来查询多相机特征 F t F_t Ft的空间信息。在 FFN 后,encoder 层输出优化后的 BEV 特征,作为下一个 encoder 层的输入。一共经过 6 个 encoder 层,就得到了时间戳 t t t的 BEV 特征 B t B_t Bt。接下来,使用 B t B_t Bt进行后续的 3D 检测和语义分割任务。

2.2 BEV Queries

定义一组网格状的可学习参数 Q ∈ R H × W × C Q\in \mathbb{R}^{H\times W\times C} QRH×W×C,作为 BEVFormer 的 queries,其中 H , W H,W HW是 BEV 平面的高度和宽度。Query Q p ∈ R 1 × C Q_p\in \mathbb{R}^{1\times C} QpR1×C位于 p = ( x , y ) p=(x,y) p=(x,y),负责 BEV 平面的相应的格子。BEV 平面上的每个网格都对应着真实世界的 s s s米长度。BEV 特征的中心对应着车辆自身(ego)的位置。在输入 BEVFormer 前,在 queries Q Q Q中加入可学习的 positional encoding。

2.3 Spatial Cross-Attention

因为多相机 3D 感知的输入尺度太大,原始的 multi-head attention 的计算成本就过高。因此,作者基于 deformable attention 设计了空间 cross-attention,每个 BEV query Q Q Q只和相机画面内的兴趣区域(RoI)发生作用。
如上图(b),将 BEV 平面的每个 query 变为 pillar-like query,从该 pillar 中采样 N r e f N_{ref} Nref个 3D reference points,然后再将这些点映射到 2D 画面。对于一个 BEV query,映射的 2D 点只会落到某些画面里面,这些画面叫做 V h i t \mathcal{V}_{hit} Vhit。将这些 2D 点看作为 query Q p Q_p Qp的 reference points,然后从 V h i t \mathcal{V}_{hit} Vhit画面中提取这些 reference points 的特征。最后,计算这些采样特征的加权和,作为空间 cross-attention 的输出。SCA 计算如下:
SCA ( Q p , F t ) = 1 ∣ V h i t ∣ ∑ i ∈ V h i t ∑ j = 1 N r e f DeformAttn ( Q p , P ( p , i , j ) , F t i ) \text{SCA}(Q_p, F_t)=\frac{1}{\left| \mathcal{V}_{hit}\right|}\sum_{i\in \mathcal{V}_{hit}}\sum_{j=1}^{N_{ref}}\text{DeformAttn}(Q_p, \mathcal{P}(p,i,j),F_t^i) SCA(Qp,Ft)=Vhit1iVhitj=1NrefDeformAttn(Qp,P(p,i,j),Fti)

其中 i i i是相机画面索引, j j j是 reference point 的索引, N r e f N_{ref} Nref是每个 BEV query pillar 中 reference points 的个数。 F t i F_t^i Fti是第 i i i个相机画面的特征。对于每个 BEV query Q p Q_p Qp,使用一个映射函数 P ( p , i , j ) \mathcal{P}(p,i,j) P(p,i,j)获取第 i i i个画面上 p = ( x , y ) p=(x,y) p=(x,y)位置的第 j j j个 reference point。

接下来,介绍如何使用映射函数 P \mathcal{P} P从图像上获取 reference point。首先计算 p = ( x , y ) p=(x,y) p=(x,y)位置上 Q p Q_p Qp对应的真实世界的坐标 ( x ′ , y ′ ) (x',y') (x,y)

x ′ = ( x − W 2 ) × s ; y ′ = ( y − H 2 ) × s x'=(x-\frac{W}{2})\times s;\quad\quad y'=(y-\frac{H}{2})\times s x=(x2W)×s;y=(y2H)×s

这里 H , W H,W H,W是 BEV queries 空间的高度和宽度, s s s是 BEV 网格的大小, ( x ′ , y ′ ) (x',y') (x,y)是坐标位置。在 3D 空间, ( x ′ , y ′ ) (x',y') (x,y)处的目标可能出现在 z ′ z' z高度。因此,作者预先定义了一组 anchor heights { z j ′ } j = 1 N r e f \lbrace z'_j \rbrace_{j=1}^{N_{ref}} {zj}j=1Nref,确保我们可以获取不同高度的信息。这样,对于每个 query Q p Q_p Qp,得到一个柱状的 3D reference points ( x ′ , y ′ , z j ′ ) j = 1 N r e f (x',y',z'_j)_{j=1}^{N_{ref}} (x,y,zj)j=1Nref。最后,通过相机参数矩阵,将 3D reference points 映射到不同的相机画面中:
P ( p , i , j ) = ( x i j , y i j ) \mathcal{P}(p,i,j)=(x_{ij}, y_{ij}) P(p,i,j)=(xij,yij)
where z i j ⋅ [ x i j y i j 1 ] T = T i ⋅ [ x ′ y ′ z j ′ 1 ] T . \text{where}\quad z_{ij}\cdot \left[ x_{ij}\quad y_{ij}\quad 1 \right]^T = T_i \cdot \left[ x' \quad y'\quad z'_j\quad 1 \right]^T. wherezij[xijyij1]T=Ti[xyzj1]T.

其中, P ( p , i , j ) \mathcal{P}(p,i,j) P(p,i,j)是第 j j j个 3D reference point ( x ′ , y ′ , z j ′ ) (x',y',z'_j) (x,y,zj)映射到第 i i i个画面的 2D 点。 T i ∈ R 3 × 4 T_i\in \mathbb{R}^{3\times 4} TiR3×4是第 i i i个相机的参数矩阵。

2.4 Temporal Self-Attention

时间信息对于视觉系统也非常重要,有助于预测运动物体的速度,或者检测遮挡物体。于是,作者设计了 temporal self-attention,融合历史 BEV 特征来表征当前的环境。

给定时间戳 t t t的 BEV queries Q Q Q t − 1 t-1 t1时间戳的历史 BEV 特征 B t − 1 B_{t-1} Bt1。首先基于车辆自身的运动,将 B t − 1 B_{t-1} Bt1 Q Q Q对齐,保证同一网格内的特征对应着同一个真实的世界坐标。将对齐后的历史 BEV 特征 B t − 1 B_{t-1} Bt1记为 B t − 1 ′ B'_{t-1} Bt1。但是从 t − 1 t-1 t1 t t t,真实世界的目标运动偏移是各不相同的。因此,作者通过 TSA 层对特征间的时间关系建模:

TSA ( Q p , { Q , B t − 1 ′ } ) = ∑ V ∈ { Q , B t − 1 ′ } DeformAttn ( Q p , p , V ) \text{TSA}(Q_p, \lbrace Q,B'_{t-1} \rbrace)=\sum_{V\in\lbrace Q,B'_{t-1} \rbrace}\text{DeformAttn}(Q_p, p, V) TSA(Qp,{Q,Bt1})=V{Q,Bt1}DeformAttn(Qp,p,V)

Q p Q_p Qp表示 p = ( x , y ) p=(x,y) p=(x,y)处的 BEV query。 { Q , B t − 1 ′ } \lbrace Q,B'_{t-1}\rbrace {Q,Bt1}是将 Q Q Q B t − 1 ′ B'_{t-1} Bt1 concat 起来,预测 TSA DeformAttn 的偏移量 Δ p \Delta p Δp。对于每个序列中的第一个样本,TSA 会退化为一个不带时间信息的 self-attention,用 BEV queries { Q , Q } \lbrace Q,Q \rbrace {Q,Q}代替 { Q , B t − 1 ′ } \lbrace Q,B'_{t-1} \rbrace {Q,Bt1}

2.5 实验

2.5.1 Training

对于时间戳 t t t的样本,从过去 2 秒的连续帧中另外选取 3 个样本,这个随机采样策略能增强车辆自身运动的多样性。将这4个样本的时间戳分别记做 t − 3 , t − 2 , t − 1 t-3,t-2,t-1 t3,t2,t1 t t t。前 3 个时间戳负责递归地产生 BEV 特征 { B t − 3 , B t − 2 , B t − 1 } \lbrace B_{t-3},B_{t-2},B_{t-1} \rbrace {Bt3,Bt2,Bt1}。对于 t − 3 t-3 t3时间戳的初始样本,TSA 会退化为 self-attention。在 t t t时刻,模型基于多相机输入和 B t − 1 B_{t-1} Bt1,产生 BEV 特征 B t B_t Bt,这样 B t B_t Bt就包含了横跨 4 个样本的时间和空间信息。最后将 B t B_t Bt输入进检测和分割 heads,计算相应的损失。

2.5.2 Inference

推理时,按时间顺序在视频的每一帧上做预测。保留前一时间戳的 BEV 特征在后面使用,这个在线推理策略节约了大量时间。
在这里插入图片描述

从下图可看出,BEVFormer 能够检测出高度遮挡的目标。
在这里插入图片描述

3. 有什么优点?

在 nuScenes test 数据集上,取得了 56.9 % 56.9\% 56.9%的 NDS,与基于 LiDAR 的方法相近。BEVFormer 能够显著提高速度的预测准确率和低可见度情况下的目标召回率。

Reference:

https://zhuanlan.zhihu.com/p/543335939

### 如何复现深度学习论文的最佳实践 复现深度学习论文是一项复杂而细致的工作,涉及多个环节和技术栈的选择。以下是针对此任务的一些最佳实践和工具推荐: #### 1. **理解论文的核心贡献** 在开始复现之前,需仔细阅读目标论文的内容,尤其是方法部分(Methodology)、实验设置(Experiment Setup)以及结果分析(Results)。这一步骤对于明确所需的数据集、模型结构、超参数配置至关重要[^1]。 #### 2. **选择适合的框架** 当前主流的深度学习框架有TensorFlow、PyTorch等。其中PyTorch因其动态计算图特性,在学术界更受欢迎;而TensorFlow则因强大的部署能力被工业界广泛应用。具体选择取决于个人熟悉程度及社区支持情况[^2]。 #### 3. **准备高质量的数据集** 确保使用的数据集版本与原文一致或者尽可能接近。如果原作者提供了公开链接,则优先下载官方发布的版本。此外还需注意预处理步骤是否完全复制了原始条件[^4]。 #### 4. **构建模型架构** 按照论文描述搭建相应的网络结构。可以利用现有开源项目中的模块化组件加速开发进程。例如,“Scale-equalizing Pyramid Convolution” 提供了一个用于物体检测的有效改进思路[^3] ,而在自动驾驶场景下,“BEVFormer”的实现展示了如何结合鸟瞰视角完成复杂的环境感知任务。 #### 5. **调试与验证** - 设置合理的初始权重初始化策略。 - 对比中间层输出特征图以确认前向传播逻辑无误。 - 调整优化器类型及其相关参数直至收敛曲线趋于平稳。 #### 6. **记录并分享成果** 将整个流程文档化,包括但不限于遇到的问题解决办法、最终达到的效果指标对比表等等。同时考虑将自己的工作上传至GitHub仓库以便他人参考学习。 ```python import torch from torchvision import models # 加载预训练模型 model = models.resnet18(pretrained=True) # 修改最后一层全连接层适应新分类数 num_ftrs = model.fc.in_features model.fc = torch.nn.Linear(num_ftrs, num_classes) ``` 上述代码片段展示了一个简单的迁移学习例子,它演示了如何调整ResNet的最后一层以适配不同的应用场景需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值