【速写】policy与reward分词器冲突问题(附XAI阅读推荐)

TRL的PPOTrainer实现存在一个很严重的问题,它的modelreward_model两个参数所使用的分词器是必须相同的,否则一定会报错。

之前已经提过,PPOTrainer要求训练数据(train_dataset参数)必须包含input_ids字段,这个跟SFTTrainerDPOTrainerGRPOTrainer都不同,查了一下源码(trl/trainer/ppo_trainer.py),发现只有PPOTrainer重写了父类transformers.Trainer.train方法,其他三个都是直接继承,因此它们三个理论上适配相同的数据集参数,即text或者input+target或者prompt+completion,这个就很神奇,因为DPOTrainer也没有重写.train方法,但是显然DPOTrainer的字段是要与其他不同的。

简单看一下PPOTrainer.train方法:

    def train(self):
        args = self.args
        accelerator = self.accelerator
        optimizer = self.optimizer
        model = self.model
        ref_policy = self.ref_model
        reward_model = self.reward_model
        processing_class = self.processing_class
        dataloader = self.dataloader
        device = accelerator.device

        def repeat_generator():
            while True:
                yield from dataloader

        iter_dataloader = iter(repeat_generator())
        generation_config = GenerationConfig(
            max_new_tokens=args.response_length,
            temperature=(args.temperature + 1e-7),
            top_k=0.0,
            top_p=1.0,
            do_sample=True,
        )

        accelerator.print("===training policy===")
        start_time = time.time()
        stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps)
        approxkl_stats = torch.zeros(stats_shape, device=device)
        pg_clipfrac_stats = torch.zeros(stats_shape, device=device)
        pg_loss_stats = torch.zeros(stats_shape, device=device)
        vf_loss_stats = torch.zeros(stats_shape, device=device)
        vf_clipfrac_stats = torch.zeros(stats_shape, device=device)
        entropy_stats = torch.zeros(stats_shape, device=device)
        ratio_stats = torch.zeros(stats_shape, device=device)
        model.train()

        # trainer state initialization
        self.state.global_step = 0
        self.state.episode = 0
        self.state.max_steps = args.num_total_batches
        self.state.num_train_epochs = args.total_episodes / self.train_dataset_len
        # Compute absolute values for logging, eval, and save if given as ratio
        if args.logging_steps is not None:
            if args.logging_steps < 1:
                self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps)
            else:
                self.state.logging_steps = args.logging_steps
        if args.eval_steps is not None:
            if args.eval_steps < 1:
                self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps)
            else:
                self.state.eval_steps = args.eval_steps
        if args.save_steps is not None:
            if args.save_steps < 1:
                self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps)
            else:
                self.state.save_steps = args.save_steps
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)

        # backward compatibility
        if self.is_deepspeed_enabled:
            self.deepspeed = self.model
            self.model_wrapped = self.model

        for update in range(1, args.num_total_batches + 1):
            self.state.episode += 1 * args.batch_size
            data = next(iter_dataloader)
            with torch.no_grad():
                queries = data["input_ids"].to(device)
                context_length = queries.shape[1]
                responses = []
                postprocessed_responses = []
                logprobs = []
                ref_logprobs = []
                scores = []
                sequence_lengths = []
                values = []
                with unwrap_model_for_generation(
                    self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
                ) as unwrapped_model:
                    query_responses, logitss = batch_generation(
                        unwrapped_model.policy,
                        queries,
                        args.local_rollout_forward_batch_size,
                        processing_class.pad_token_id,
                        generation_config,
                    )

                for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size):
                    query = queries[i : i + args.local_rollout_forward_batch_size]
                    query_response = query_responses[i : i + args.local_rollout_forward_batch_size]
                    response = query_response[:, context_length:]
                    logits = logitss[i : i + args.local_rollout_forward_batch_size]
                    logprob = selective_log_softmax(logits, response)
                    del logits
                    torch.cuda.empty_cache()

                    if ref_policy is None:
                        with self.null_ref_context():
                            ref_output = forward(model.policy, query_response, processing_class.pad_token_id)
                    else:
                        ref_output = forward(ref_policy, query_response, processing_class.pad_token_id)
                    ref_logits = ref_output.logits[:, context_length - 1 : -1]
                    ref_logits /= args.temperature + 1e-7
                    ref_logprob = selective_log_softmax(ref_logits, response)
                    del ref_output, ref_logits
                    torch.cuda.empty_cache()

                    # Response Processing 1. truncate response after the first occurrence of `stop_token_id`
                    postprocessed_response = response
                    if self.stop_token_id is not None:  # handle the edge case when stop_token_id exists but is 0
                        postprocessed_response = truncate_response(
                            self.stop_token_id, processing_class.pad_token_id, response
                        )

                    # Response Processing 2. run reward model on the truncated responses
                    postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
                    sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1
                    unwrapped_value_model = accelerator.unwrap_model(model).value_model
                    full_value, _, _ = get_reward(
                        unwrapped_value_model, query_response, processing_class.pad_token_id, context_length
                    )
                    value = full_value[:, context_length - 1 : -1].squeeze(-1)
                    _, score, _ = get_reward(
                        reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
                    )

                    responses.append(response)
                    postprocessed_responses.append(postprocessed_response)
                    logprobs.append(logprob)
                    ref_logprobs.append(ref_logprob)
                    sequence_lengths.append(sequence_length)
                    scores.append(score)
                    values.append(value)
                responses = torch.cat(responses, 0)
                postprocessed_responses = torch.cat(postprocessed_responses, 0)
                logprobs = torch.cat(logprobs, 0)
                ref_logprobs = torch.cat(ref_logprobs, 0)
                sequence_lengths = torch.cat(sequence_lengths, 0)
                scores = torch.cat(scores, 0)
                values = torch.cat(values, 0)
                del (logprob, ref_logprob, full_value, value, score, unwrapped_model)
                torch.cuda.empty_cache()
                gc.collect()

                # Response Processing 3. Filter completion. Ensure that the sample contains stop_token_id
                # Completions not passing that filter will receive a lower score.
                contain_eos_token = torch.any(postprocessed_responses == self.processing_class.eos_token_id, dim=-1)
                if self.args.missing_eos_penalty is not None:
                    scores[~contain_eos_token] -= self.args.missing_eos_penalty
                # accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}")

                # be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw
                response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1)
                padding_mask = response_idxs > sequence_lengths.unsqueeze(1)
                logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB)
                ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB)
                sequence_lengths_p1 = sequence_lengths + 1
                padding_mask_p1 = response_idxs > (sequence_lengths_p1.unsqueeze(1))
                values = torch.masked_fill(values, padding_mask_p1, 0)

                # 4. compute rewards
                # Formula used by http://joschu.net/blog/kl-approx.html for the k1 and k3 estimators
                logr = ref_logprobs - logprobs
                kl = -logr if args.kl_estimator == "k1" else (logr.exp() - 1) - logr  # Else statement is k3
                non_score_reward = -args.kl_coef * kl
                rewards = non_score_reward.clone()
                actual_start = torch.arange(rewards.size(0), device=rewards.device)
                actual_end = torch.where(sequence_lengths_p1 < rewards.size(1), sequence_lengths_p1, sequence_lengths)
                rewards[[actual_start, actual_end]] += scores

                # 5. whiten rewards
                if args.whiten_rewards:
                    rewards = masked_whiten(rewards, mask=~padding_mask_p1, shift_mean=False)
                    rewards = torch.masked_fill(rewards, padding_mask_p1, 0)

                # 6. compute advantages and returns
                lastgaelam = 0
                advantages_reversed = []
                gen_length = responses.shape[1]
                for t in reversed(range(gen_length)):
                    nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0
                    delta = rewards[:, t] + args.gamma * nextvalues - values[:, t]
                    lastgaelam = delta + args.gamma * args.lam * lastgaelam
                    advantages_reversed.append(lastgaelam)
                advantages = torch.stack(advantages_reversed[::-1], axis=1)
                returns = advantages + values
                advantages = masked_whiten(advantages, ~padding_mask)
                advantages = torch.masked_fill(advantages, padding_mask, 0)
                torch.cuda.empty_cache()

            # Do multiple epochs of PPO training, with a fresh random shuffle in each epoch
            for ppo_epoch_idx in range(args.num_ppo_epochs):
                b_inds = np.random.permutation(args.local_batch_size)
                minibatch_idx = 0
                for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size):
                    mini_batch_end = mini_batch_start + args.local_mini_batch_size
                    mini_batch_inds = b_inds[mini_batch_start:mini_batch_end]
                    gradient_accumulation_idx = 0
                    for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size):
                        with accelerator.accumulate(model):
                            micro_batch_end = micro_batch_start + args.per_device_train_batch_size
                            micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end]
                            mb_advantage = advantages[micro_batch_inds]
                            mb_responses = responses[micro_batch_inds]
                            mb_query_responses = query_responses[micro_batch_inds]
                            mb_logprobs = logprobs[micro_batch_inds]
                            mb_return = returns[micro_batch_inds]
                            mb_values = values[micro_batch_inds]

                            output, vpred_temp = forward(model, mb_query_responses, processing_class.pad_token_id)
                            logits = output.logits[:, context_length - 1 : -1]
                            logits /= args.temperature + 1e-7
                            new_logprobs = selective_log_softmax(logits, mb_responses)
                            new_logprobs = torch.masked_fill(
                                new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB
                            )
                            vpred = vpred_temp[:, context_length - 1 : -1].squeeze(-1)
                            vpred = torch.masked_fill(vpred, padding_mask_p1[micro_batch_inds], 0)
                            vpredclipped = torch.clamp(
                                vpred,
                                mb_values - args.cliprange_value,
                                mb_values + args.cliprange_value,
                            )
                            vf_losses1 = torch.square(vpred - mb_return)
                            vf_losses2 = torch.square(vpredclipped - mb_return)
                            vf_loss_max = torch.max(vf_losses1, vf_losses2)
                            vf_loss = 0.5 * masked_mean(vf_loss_max, ~padding_mask_p1[micro_batch_inds])
                            vf_clipfrac = masked_mean(
                                (vf_losses2 > vf_losses1).float(), ~padding_mask_p1[micro_batch_inds]
                            )
                            logprobs_diff = new_logprobs - mb_logprobs
                            ratio = torch.exp(logprobs_diff)
                            pg_losses = -mb_advantage * ratio
                            pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange)
                            pg_loss_max = torch.max(pg_losses, pg_losses2)
                            pg_loss = masked_mean(pg_loss_max, ~padding_mask[micro_batch_inds])
                            loss = pg_loss + args.vf_coef * vf_loss
                            accelerator.backward(loss)
                            optimizer.step()
                            optimizer.zero_grad()
                            with torch.no_grad():
                                pg_clipfrac = masked_mean(
                                    (pg_losses2 > pg_losses).float(), ~padding_mask[micro_batch_inds]
                                )
                                prob_dist = torch.nn.functional.softmax(logits, dim=-1)
                                entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1)
                                approxkl = 0.5 * (logprobs_diff**2).mean()
                                approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl
                                pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
                                    pg_clipfrac
                                )
                                pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss
                                vf_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = vf_loss
                                vf_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
                                    vf_clipfrac
                                )
                                entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean()
                                ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ratio.mean()
                        gradient_accumulation_idx += 1
                    minibatch_idx += 1
                    # del everything and empty cache
                    # fmt: off
                    del (
                        output, vpred_temp, logits, new_logprobs, vpred, vpredclipped,
                        vf_losses1, vf_losses2, vf_loss, vf_clipfrac, logprobs_diff, ratio, pg_losses, pg_losses2, pg_loss_max,
                        pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl, mb_return,
                        mb_advantage, mb_values, mb_responses, mb_query_responses, mb_logprobs,
                    )
                    # fmt: on
                    torch.cuda.empty_cache()
            with torch.no_grad():
                mean_kl = kl.sum(1).mean()
                mean_entropy = (-logprobs).sum(1).mean()
                mean_non_score_reward = non_score_reward.sum(1).mean()
                rlhf_reward = mean_non_score_reward + scores.mean()
                eps = int(self.state.episode / (time.time() - start_time))
                metrics = {}
                metrics["eps"] = eps
                metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item()
                metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item()
                metrics["objective/non_score_reward"] = (
                    self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
                )
                metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item()
                metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item()
                metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item()
                metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item()
                metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item()
                metrics["loss/value_avg"] = self.accelerator.gather_for_metrics(vf_loss_stats).mean().item()
                metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item()
                metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item()
                metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item()
                metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item()
                metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item()
                metrics["lr"] = self.lr_scheduler.get_last_lr()[0]
                metrics["episode"] = self.state.episode
                self.state.epoch = self.state.episode / self.train_dataset_len  # used by self.log
                self.state.global_step += 1
                self.log(metrics)

            self.lr_scheduler.step()
            self.control = self.callback_handler.on_step_end(args, self.state, self.control)
            if self.control.should_save:
                self._save_checkpoint(model, trial=None)
                self.control = self.callback_handler.on_save(self.args, self.state, self.control)
            del kl, mean_kl, mean_entropy, mean_non_score_reward, scores, metrics, non_score_reward
            torch.cuda.empty_cache()
            gc.collect()

            if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0:
                self.generate_completions(sampling=True)
                torch.cuda.empty_cache()
            del (
                query_responses,
                responses,
                postprocessed_responses,
                logprobs,
                ref_logprobs,
                values,
                sequence_lengths,
                contain_eos_token,
                sequence_lengths_p1,
                response_idxs,
                padding_mask,
                padding_mask_p1,
                rewards,
                actual_start,
                actual_end,
                advantages,
                returns,
            )
            torch.cuda.empty_cache()

        # HF trainer specifics
        self.control = self.callback_handler.on_train_end(args, self.state, self.control)
        if self.control.should_save:
            self._save_checkpoint(model, trial=None, metrics=None)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

逻辑很清晰(这里很明显看到了queries = data["input_ids"].to(device),即要求有input_ids字段):

  1. 首先在policy上做生成,即采样得到query_response

    query_responses, logitss = batch_generation(
        unwrapped_model.policy,
        queries,
        args.local_rollout_forward_batch_size,
        processing_class.pad_token_id,
        generation_config,
    )
    
  2. 然后把query_response拿去计算奖励和价值:

    full_value, _, _ = get_reward(
        unwrapped_value_model, query_response, processing_class.pad_token_id, context_length
    )
    value = full_value[:, context_length - 1 : -1].squeeze(-1)
    _, score, _ = get_reward(
        reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
    )
    

问题就出在这儿了,reward和policy使用了相同的processing_class,即分词器,这个问题很难修改,除非你先把query_responses还原成文本,然后再用reward_model的分词器重新分一次词,否则这里就是强制要求它们的分词器相同的。

在PPO官方示例中,使用的策略模型是EleutherAI/pythia-1b-deduped,而PPOConfig默认的奖励模型是EleutherAI/pythia-160m,这两个的分词器刚好一样,所以没有出问题。

如果现在想用其他策略模型(即换个LLM来训练),那么就必须找到和它相同基座的奖励模型,比如对于Qwen系列,TRL是提供了一个Qwen基座的的奖励模型的:trl-lib/Qwen2-0.5B-Rewardhttps://huggingface.co/trl-lib/Qwen2-0.5B-Reward


然后推荐一本XAI的好书:Explainable AI with Python,电子版挂在下面了:

通过网盘分享的文件:explainable-ai-with-python.pdf
链接: https://pan.baidu.com/s/13nS8mNMhif62o0F3cG0X5A?pwd=avdu 提取码: avdu 复制这段内容后打开百度网盘手机App,操作更方便哦

这个对XAI概括的很专业,之前提过的那篇ICLR做Learning Dynamics的工作arXiv:2407.10490,我一直觉得他没做完,它也是从MNIST入手,明明开头说要做来了一个新的sample后对老的sample有何影响,但是做到后面变成了来了一个新的sample后对这个模型新的sample的预测有何变化?这个就很奇怪,前后说不通了。

在这个书中DeepLift的例子中,给了一个MNIST非常好的一个解释案例:

在这里插入图片描述

利用这种可视化的图,来说明图片的每个像素对各个预测类别标签的贡献,这个就很有说服力,代码:

# -*- coding: utf8 -*-
from __future__ import print_function
import shape
import numpy
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras import backend as K


# DeepShap using DeepExplainer
# ... include code from https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
batch_size = 128
num_classes = 10
epochs = 1

# input image dimensions
img_rows, img_cols = 28, 28

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == "channel_first":
	x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
	x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
	input_shape = (1, img_rows, img_cols)
else:
	x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
	x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
	input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype("float32")
x_test = x_test.astype("float32")
x_train /= 255
x_test /= 255

print("x_train shape:", x_train.shape)
print("x_test shape:", x_test.shape)

# convert class vectors to binary class metrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(.25))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dropout(.5))
model.add(Dense(num_classes, activation="softmax"))
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=["accuracy"])
model.fix(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

# ----------------------------------------------------------------------

# DeepShap using DeepExplainer
# select a set of background examples to take an expectation over
background = x_train[numpy.random.choice(x_train.shape[0], 100, replace=False)]
# explain predictions of the model on four images
e = shap.DeepExplainer(model, background)
# ... or pass tensors directly
# e = shap.DeepExplainer((model.layers[0].input, model.layers[-1].output), background)
shap_values = e.shap_values(x_test[1:5])
# plot the feature attributions
shap.image_plot(shap_values, -x_test[1:5])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值