专家混合 (MoE):条件计算的诞生和兴起

        前言:本文基于《Mixture-of-Experts (MoE): The Birth and Rise of Conditional Computation》一文的部分内容进行翻译,对文中关于MoE的解释与总结部分进行记录,关于文中阐述的MoE架构的起源、MoE应用到transformer轻松扩展到万亿参数模型,以及其他内容不做记录,有需要的读者可自行阅读原文https://cameronrwolfe.substack.com/p/conditional-computation-the-birth

        大型语言模型 (LLM) 的现代进步主要是缩放定律的产物 。当我们增加基础模型的大小时,假设模型是在足够大的数据集上进行训练的,我们会看到性能的平稳提高。这种缩放法则最终导致我们创建了 GPT-3,以及随后的其他(更强大的)LLM。当扩展这些密集的 LLM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值