Tensorflow 2.x(keras)源码详解之第十六章:分布式部署(如何使用GPU)

  大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。

  本文主要介绍了Tensorflow 2.x(keras)源码详解之第十六章:分布式部署(如何使用GPU),希望能对学习TensorFlow 2的同学有所帮助。

1. 分布式训练前言

  • 默认情况下,keras会使用机器上最好的资源进行训练,如果服务器有TPU会自动使用TPU;在没有TPU,有GPU的情况下,自动使用GPU;TPU和GPU都没有时,使用CPU。

  • 当使用GPU时,如果服务器有多块GPU,一个任务默认会占满每一块GPU的几乎全部存储空间。

  • 在一台或多台机器上,要顺利地在多个 GPU 上运行,最简单的方法是使用分布策略

  • 设置:

    • 查看是否有GPU,以及GPU的详情以及查看CPUS
    gpus 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱编程的喵喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值