文章目录 1. xgboost原理 1.1训练集样本信息 1.2 logistic 及其损失函数 1.3 xgboost推导(结合logistic及其损失函数) 2.xgboost 优化 2.1步长(shrinkage) 2.2 行、列抽样 2.3 特征选择的优化 2.4 切分点的选取 – Weighted Quantile Sketch 2.5 稀疏矩阵(缺失值)处理 2.6 列排序优化 2.7 缓存优化 3 xgboost 使用及参数 3.1 初识xgboost 3.1.1 xgboost使用方法 3.1.2 xgboost方法1代码 3.1.3 xgboost方法1代码扩展 3.1.4 xgboost 使用方法2代码 3.1.5 xgboost 的交叉验证 3.1.6 自定义损失函数与评估准则 3.1.7 早停 3.1.8使用前n棵树预测 3.1.9 特征重要度 3.2 xgb主要参数 4.xgboost 常见面试问题 5.从xgboost到lightgbm 1. xgboost原理 首先说明,xgboost做的一些列推导其实就是为了推导出一个像决策树信息增益这样的特征选择指标。当然具体实现上和决策树还是有所不同的 1.1训练集样本信息 1.2 logistic 及其损失函数 logistic表达式: y ^ = l o g ( p