ubuntu16.0.4环境搭建opencv、torch、visdom和tensorflow

ubuntu16.0.4环境搭建opencv、torch、visdom和tensorflow

opencv环境搭建

一、文件准备

OpenCV3.4.2:https://github.com/opencv/opencv/archive/3.4.2.zip

OpenCV_Contrib:https://github.com/opencv/opencv_contrib/archive/3.4.2.zip
解压文件:

unzip opencv-3.4.2.zip
unzip opencv_contrib-3.4.2.zip

将contrib复制到opencv中,并新建build

cp -r opencv_contrib-3.4.2 opencv-3.4.2 #复制opencv_contrib到opencv目录下
cd opencv-3.4.2
mkdir build#新建文件夹build

文件结构如图

二、安装编译依赖

安装依赖包

sudo apt-get install build-essential 
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install python3-dev python3-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
sudo apt-getinstall pkg-config
sudo apt-get install pkg-config

三、编译

这一步最为关键的是编译选项
进入build文件:
cd build
编译命令

cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D PYTHON3_EXECUTABLE=/usr/bin/python3 \
-D PYTHON_INCLUDE_DIR=/usr/include/python3.5 \
-D PYTHON_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.5m.so \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/usr/local/lib/python3.5/dist-packages/numpy/core/include \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D INSTALL_C_EXAMPLES=OFF \
-D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib-3.4.2/modules \
-D PYTHON_EXECUTABLE=/usr/lib/python3 \
-D BUILD_EXAMPLES=ON ..

执行命令
make
这个过程估计在好几个小时,此时可以先去做其他事情,等执行完后执行
sudo make install
这样就表示安装成功了!!!测试结果如下:

安装torch

第一步:从git上获取安装LuaJIT(C语言编写的Lua的解释器)和Torch所必需的依赖包:

在终端执行:git clone https://github.com/torch/distro.git ~/torch --recursive

第二步:进入torch目录,

执行:bash install-deps

第三步:执行:./install.sh 这一步最后会出现让输入yes,并输入yes即可
第四步:添加环境变量

输入yes后执行source ~/.bashrc添加环境变量,但我在这一步出现如下问题:

解决办法是在终端输入:vim ~/.bashrc编辑bashrc文件,按“shift+G”跳到文件末尾,在torch-activate后面添加一行,如下:

保存退出后再次执行source ~/.bashrc就行了。

第五步:输入:th测试是否安装成功,当出线如下标识说明已成功安装:

visdom的安装

pytorch下可采用visidom作为可视化工具

1. 安装
pip install visdom
conda install visdom
2、启动

python -m visdom.server
在浏览器输入:http://localhost:8097/ ,即可启动

tensorflow安装

参考:https://collaborate.linaro.org/display/BDTS/Building+and+Installing+Tensorflow+on+AArch64

### 如何在 Ubuntu 16.04 上安装 TensorFlow-GPU #### 准备工作 确保已经正确安装了 NVIDIA 显卡驱动以及 CUDA cuDNN 的相应版本。这些组件对于 TensorFlow-GPU 版本的支持至关重要[^5]。 #### 安装依赖库 为了使 TensorFlow 能够访问 GPU 性能统计信息,需先通过命令 `sudo apt-get install libcupti-dev` 来安装必要的支持包。 #### 使用 Pip 进行安装 可以通过 Python 的包管理工具 pip 来安装特定版本的 TensorFlow-GPU。例如: ```bash pip3 install --trusted-host pypi.org --trusted-host files.pythonhosted.org tensorflow-gpu==1.10.0 --user ``` 这条指令指定了信任的主机地址来绕过某些网络环境下的安全限制,并选择了具体的 TensorFlow-GPU 版本号进行安装。 另外,在其他资料中也提到了不同的 TensorFlow-GPU 版本,比如可以使用如下命令安装较早版本: ```bash sudo pip install tensorflow-gpu==1.2.0 ``` 或者是稍新的版本: ```bash pip install tensorflow-gpu==1.6.0 ``` 这取决于项目需求个人偏好[^1][^2]。 #### 创建虚拟环境 (可选) 如果希望保持系统的整洁并减少不同项目的冲突风险,则建议创建一个新的 Python 虚拟环境再执行上述安装操作。这样做的好处是可以独立控制各个项目的依赖项而不影响全局设置[^4]。 #### 验证安装成果 完成以上步骤后,可通过运行简单的 Python 程序测试 TensorFlow 是否能够识别到本地存在的 GPU 设备: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ``` 这段代码会打印出所有被检测到的物理 GPU 列表;如果有任何输出则说明 TensorFlow 已经成功连接上了 GPU 并准备就绪[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cuiran

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值