开源模型应用落地-qwen模型小试-function call(十)

本文介绍了如何结合Qwen1.5语言模型和心知天气API,通过Function Call功能获取并解析实时天气信息。首先,创建虚拟环境,安装所需依赖,下载模型,启动API服务,然后注册心知天气账号获取API key。接着,通过调用本地函数结合心知天气API获取广州的天气数据,最后模型总结出天气状况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

    每个模型都有自己的限制,有些情况下它们无法满足复杂的业务需求。但是,可以通过一个外置函数的方式,例如:"Function Call",让开发者能够更加灵活地利用大型语言模型,帮助开发者在特定场景下解决问题。

    VS 开源模型应用落地-chatglm3-6b-function call-入门篇(六)


二、术语

2.1.Function Call

    Function Call 是一项强大的功能,它允许开发者向模型提供不同的函数来执行特定的任务,根据用户的输入和要求。这些函数可以接受输入参数,并根据当前的任务提供相关的输出。

2.2.心知天气

    是一家气象方案提供商,专注于向企业客户提供精细化的天气数据和解决方案。

    通过标准的Restful API接口,提供标准化的数据访问。无论是APP、智能硬件还是企业级系统都可以轻松接入心知的精细化天气数据。


三、前提条件

3.1.安装虚拟环境


                
<think>好的,我现在需要帮助用户解决关于如何运行他们本地下载的DeepSeek-R1-Distill-Qwen-1.5B模型进行连续对话的问题。首先,我要回顾之前的对话历史,看看用户之前问了什么,我之前回答了什么。用户之前问过关于safetensors模型的一般运行方法,我给出了安装依赖、加载模型、实现对话逻辑等步骤。现在用户具体询问的是DeepSeek-R1-Distill-Qwen-1.5B这个模型,我需要针对这个模型给出更具体的指导。 首先,我需要确认这个模型的基本信息。DeepSeek-R1-Distill-Qwen-1.5B是由深度求索公司开发的,基于Qwen-1.5B蒸馏得到的模型,适用于对话任务。这可能意味着它在对话格式上有特定的要求,比如特定的prompt模板或者角色标记。我需要查阅该模型的文档或Hugging Face页面,了解其输入输出的格式要求。 接下来,用户的需求是进行连续对话,所以必须处理对话历史的维护。不同的模型对对话历史的格式要求不同,比如有些使用“<|im_start|>”和“<|im_end|>”标记,有些可能用“User:”和“Assistant:”这样的角色标签。如果DeepSeek-R1-Distill-Qwen-1.5B是基于Qwen的,那么可能继承了Qwen的对话格式,比如使用“<|im_start|>”标签。我需要确认这一点,并在代码中正确实现。 然后,我需要考虑模型加载时的参数。比如,是否需要设置trust_remote_code=True,因为有些模型需要自定义代码。此外,显存管理也很重要,特别是对于1.5B的模型,用户可能在消费级GPU上运行,可能需要使用量化(如bitsandbytes的8bit或4bit加载)或者设备映射(device_map="auto")来优化资源使用。 另外,生成回复时的参数设置也很关键。比如max_new_tokens、temperature、top_p等,这些参数会影响生成结果的质量和多样性。需要根据模型的特点推荐合适的默认值,同时提醒用户可以根据需要进行调整。 还需要处理模型的输出解析。由于模型生成的回复可能包含特殊标记或格式,需要正确提取助手的回复部分。例如,可能需要根据模型使用的分隔符来分割生成的文本,获取最后一个assistant部分的内容。 此外,用户可能遇到常见问题,比如显存不足、回复不连贯或者速度慢。我应该提前预见到这些问题,并在回答中给出解决方案,比如减少max_new_tokens、启用量化、检查是否使用了GPU等。 最后,确保代码示例正确无误,并且针对该模型进行了适配。可能需要测试一下代码片段,或者在示例中明确标注需要用户替换的部分,如模型路径,以及可能的对话模板调整。 总结下来,我的回答需要包括以下几个部分: 1. 模型简介:说明该模型的背景和特点。 2. 安装依赖:可能和之前类似,但需要确认是否有额外的库。 3. 加载模型和分词器:使用正确的参数,如trust_remote_code。 4. 对话模板:根据模型要求构造正确的输入格式。 5. 连续对话逻辑:维护对话历史,正确拼接输入。 6. 生成参数调整:推荐适合该模型的生成参数。 7. 示例代码:提供适配后的代码,方便用户直接使用。 8. 常见问题处理:显存、速度、格式问题等。 现在需要验证DeepSeek-R1-Distill-Qwen-1.5B的具体对话格式。查阅Hugging Face模型卡或相关文档,发现该模型可能遵循Qwen的对话结构,使用类似“<|im_start|>”和“<|im_end|>”的标记。例如,用户输入和助手回复会被包裹在这些标记中,并带有role标签(如user、assistant)。因此,在构造输入时需要按照这种格式拼接对话历史,否则模型可能无法正确理解上下文。 因此,在代码中,对话历史需要转换为这种格式,而不仅仅是简单的“user:”和“assistant:”拼接。例如,每个对话回合应该格式化为: <|im_start|>user 用户输入内容<|im_end|> <|im_start|>assistant 助手回复内容<|im_end|> 这样,模型才能正确识别角色和内容。同时,生成回复后,需要从输出中提取最后一个“<|im_start|>assistant”之后的内容,直到遇到“<|im_end|>”为止。 此外,加载模型时可能需要指定revision参数,或者调整其他加载选项,确保兼容性。例如,某些模型可能需要特定的transformers版本,需要提醒用户注意版本匹配。 在生成参数方面,可能需要调整temperature和top_p来平衡生成结果的确定性和多样性。对于蒸馏模型,可能推荐较低的temperature值,以获得更确定和简洁的回答。 最后,检查是否有其他注意事项,比如模型的许可证、使用限制等,需要在回答中提及,确保用户合规使用。</think>以下是针对 **DeepSeek-R1-Distill-Qwen-1.5B** 模型的运行和连续对话实现指南: --- ### **1. 模型简介** - **DeepSeek-R1-Distill-Qwen-1.5B** 是深度求索(DeepSeek)基于 Qwen-1.5B 蒸馏优化的对话模型,专为多轮对话任务设计。 - 特点: - 参数量 1.5B,适合消费级 GPU(如 8GB 显存以上)运行。 - 支持中英文对话,遵循 Qwen 系列的对话格式(使用特殊标记 `<|im_start|>` 和 `<|im_end|>`)。 - 对上下文理解能力较强,适合连续对话场景。 --- ### **2. 安装依赖** 确保已安装以下库: ```bash pip install transformers accelerate safetensors ``` --- ### **3. 加载模型与分词器** 使用 Hugging Face 的 `AutoModelForCausalLM` 加载本地模型,需注意: - 模型路径需指向包含 `safetensors` 文件的目录。 - 由于模型基于 Qwen 架构,需设置 `trust_remote_code=True`。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "你的本地模型路径" # 例如 "./DeepSeek-R1-Distill-Qwen-1.5B" tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", # 自动分配 GPU/CPU trust_remote_code=True, # 允许执行模型自定义代码 # load_in_4bit=True, # 显存不足时启用 4bit 量化(需安装 bitsandbytes) ) ``` --- ### **4. 对话格式要求** 该模型遵循 **Qwen 对话模板**,需严格按以下格式拼接对话历史: ```text <|im_start|>system 你是一个AI助手<|im_end|> <|im_start|>user 用户输入内容<|im_end|> <|im_start|>assistant 助手回复内容<|im_end|> ... ``` #### **连续对话实现逻辑** 1. **维护对话历史列表**:每次将用户输入和模型回复按模板格式拼接。 2. **生成回复时包含完整历史**:确保模型能理解上下文。 --- ### **5. 完整代码示例** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "你的本地模型路径" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", trust_remote_code=True ) # 初始化对话历史(可加入 system prompt) chat_history = [ {"role": "system", "content": "你是一个AI助手"} ] while True: # 用户输入 user_input = input("你: ").strip() if user_input.lower() in ["exit", "quit"]: break # 将用户输入加入历史 chat_history.append({"role": "user", "content": user_input}) # 按 Qwen 模板拼接完整对话文本 formatted_history = "" for msg in chat_history: formatted_history += f"<|im_start|>{msg['role']}\n{msg['content']}<|im_end|>\n" # 生成回复 inputs = tokenizer( formatted_history, return_tensors="pt", add_special_tokens=False # 避免重复添加特殊标记 ).to(model.device) outputs = model.generate( inputs.input_ids, max_new_tokens=512, # 最大生成长度 temperature=0.5, # 控制随机性(0~1,值越小越确定) top_p=0.9, # 核采样概率阈值 do_sample=True, pad_token_id=tokenizer.eos_token_id ) # 解码并提取最新回复 full_response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) assistant_reply = full_response.split("<|im_end|>")[0].strip() # 提取第一个 <|im_end|> 前的内容 # 将回复加入历史 chat_history.append({"role": "assistant", "content": assistant_reply}) print(f"助手: {assistant_reply}") ``` --- ### **6. 关键参数说明** | 参数 | 说明 | |--------------------|----------------------------------------------------------------------| | `max_new_tokens` | 控制生成文本的最大长度(建议 512 以内以避免截断) | | `temperature` | 值越小输出越确定(如 0.3),值越大越随机(如 0.9) | | `top_p` | 核采样阈值(与 `temperature` 配合使用,过滤低概率词) | | `device_map="auto"`| 自动分配 GPU/CPU 资源(需安装 `accelerate` 库) | --- ### **7. 常见问题解决** 1. **显存不足**: - 启用 4bit 量化:添加 `load_in_4bit=True`(需安装 `bitsandbytes`)。 - 减少 `max_new_tokens` 值。 2. **回复不符合格式**: - 检查是否严格按照 `<|im_start|>` 和 `<|im_end|>` 拼接历史。 - 确保 `tokenizer` 不自动添加额外特殊标记(设置 `add_special_tokens=False`)。 3. **响应速度慢**: - 确认模型已加载到 GPU(检查 `model.device`)。 - 尝试更小的 `max_new_tokens`。 --- ### **8. 进阶优化** - **流式输出**:使用 `streamer` 参数实现逐字输出(参考 Hugging Face 文档)。 - **自定义 System Prompt**:通过修改 `chat_history` 中的 `system` 角色内容调整助手行为。 - **历史长度限制**:添加逻辑截断过长历史(如保留最近 4 轮对话)。 如果需要更详细的模型特性或微调方法,可参考 [DeepSeek 官方文档](https://github.com/deepseek-ai)
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值