开源模型应用落地-模型量化-Qwen1.5-7B-Chat-AWQ(二)

本文介绍了模型量化技术,特别是激活感知权重量化(AWQ),用于降低大语言模型如Qwen1.5的存储需求和计算复杂度,提高在资源受限设备上的效率。AWQ仅保护少量关键权重,通过观察激活分布实现低比特位量化,适用于边缘设备部署。文章还涵盖了构建环境和部署服务的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

    在开源模型百花齐放的时代,每个人都想动手尝试,但是由于模型规模的较大和设备资源的不足,很多人只能望而却步。不过,通过模型量化技术,我们可以大大降低模型的存储需求和计算复杂度,从而提高在这些设备上的效率和性能。这样一来,就能够以较低的成本体验大语言模型的魅力了。

    开源模型应用落地-模型量化-Qwen1.5-7B-Chat-GPTQ-Int8(一)icon-default.png?t=N7T8https://charles.blog.csdn.net/article/details/139001380


二、术语介绍

2.1.

评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值