一文弄懂神经网络中的反向传播法——Back Propagation

本文通过实例详细解释了神经网络中的反向传播法,包括前向传播、误差反向传播以及权值更新过程。利用链式求导法则,逐步计算各层神经元的误差和权重更新,以期达到最小化输出误差的目的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方“迈微AI研习社”,选择“星标★”公众号

重磅干货,第一时间送达

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了(点击这里文章第三部分观看);后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。

反向传播法其实是神经网络的基础了,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Charmve

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值