自动驾驶感知算法实战15——纯视觉感知和传感器融合方案对比,特斯拉九头蛇的进化

自动驾驶领域的纯视觉感知与多传感器融合方案对比,特斯拉选择了纯视觉路线,抛弃毫米波雷达。文章分析了两种方案的优缺点,特斯拉的HydraNet和Occupancy Network技术细节,包括多相机输入、时空信息整合,以及3D感知的Occupancy Network。特斯拉的解决方案展示了强大的工程能力和创新精神,但同时也引发对安全性和可靠性的讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自动驾驶感知算法实战专栏:https://blog.csdn.net/charmve/category_12097938.html

纯视觉or多传感器融合?自动驾驶在感知技术方面的路线之争始终热烈,两方阵营各有知名企业坐镇。

一边是特斯拉放弃毫米波雷达,选择纯视觉感知路线,另一边是中国厂商却加紧激光雷达的布局,走多传感器融合路线。

“任何依靠激光雷达(开发自动驾驶)的企业注定完蛋。这些昂贵的传感器毫无必要,就像是长了个昂贵的阑尾。”早在2019年的Autonomy Day大会上,特斯拉CEO马斯克就公开质疑过激光雷达的实用性。

但一批国内厂商却持有不同的声音,目前,无论蔚来、小鹏、理想、威马、智己等新势力,还是长城、一汽等传统主机厂,纷纷在新车型上搭载激光雷达,形成摄像头、毫米波雷达、激光雷达等多传感器融合的系统,和特斯拉走上一条完全不同的道路。

“汽车真的需要激光雷达吗?如果我们只靠人眼开车,每10万人中就有18人死于交通事故,当时速到达70公里以上时,死亡率攀升到98%,这是不能被接受的,因此我们要想办法超越人的极限,激光雷达,本质是对人眼的视觉运力提升和控制力提升。”激光雷达生产厂商北醒科技CEO李远在第20届中国汽车供应链大会上如是说。

自动驾驶的感知系统路线之争,逐渐由纯粹的学术理论问题演变为现实的供应链格局问题。

不同的多传感器融合路线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Charmve

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值