目录
1. 题目描述
给你一个下标从 0 开始的整数数组 nums ,该数组的大小为 n ,请你计算 nums[j] - nums[i] 能求得的 最大差值 ,
其中 0 <= i < j < n 且 nums[i] < nums[j] 。
返回 最大差值 。如果不存在满足要求的 i 和 j ,返回 -1 。
示例 1:
输入:nums = [7,1,5,4]
输出:4
解释:
最大差值出现在 i = 1 且 j = 2 时,nums[j] - nums[i] = 5 - 1 = 4 。
注意,尽管 i = 1 且 j = 0 时 ,nums[j] - nums[i] = 7 - 1 = 6 > 4 ,但 i > j 不满足题面要求,所以 6 不是有效的答案。
示例 2:
输入:nums = [9,4,3,2]
输出:-1
解释:
不存在同时满足 i < j 和 nums[i] < nums[j] 这两个条件的 i, j 组合。
示例 3:
输入:nums = [1,5,2,10]
输出:9
解释:
最大差值出现在 i = 0 且 j = 3 时,nums[j] - nums[i] = 10 - 1 = 9 。
提示:
n == nums.length
2 <= n <= 1000
1 <= nums[i] <= 109
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-difference-between-increasing-elements
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题分析
最Naive的办法是对数组中的所有数做两两比较求差值,然后求其最大值。这样的复杂度是。但是应该有更好的办法。
记题目所要求的最大差值为,考虑序列中最大值为nums[k],则数组前半部分nums[0],nums[1],...,nums[k]的最大差值可以记为
(python-style slicing),数组后半部分的最大差值可以记为
,很明显它们之间满足如下关系:
我们可以得到基于以上递推关系的基于递归调用的动态规划解决方法。
针对输入数组,先找到最大值,以及到该最大值为止的前半部分的最小值。这样可以得到前半部分的最大差值,然后再通过递归调用求后半部分的最大差值,两个最大差值的较大的一个即为所求结果。如果所求得的最大差值为0就表示没有符合条件的,返回-1.
3. 代码实现
from typing import List
class Solution:
def maximumDifference(self, nums: List[int]) -> int:
def dp(start,end):
# print('dp({0},{1})'.format(start,end) )
# baseline case
if start==end:
return 0
maxv = nums[start]
maxidx = start
# Find the maximum value
for k in range(start,end):
if nums[k] > maxv:
maxv = nums[k]
maxidx = k
# Find the minimum value within period [start,k]
minv = nums[start]
for k in range(start,maxidx):
if nums[k] < minv:
minv = nums[k]
maxdiff0 = maxv - minv
maxdiff1 = dp(maxidx+1,end)
return max(maxdiff0,maxdiff1)
ans = dp(0,len(nums))
return ans if ans > 0 else -1
if __name__ == '__main__':
sln = Solution()
nums = [7,1,5,4]
print('nums={0}, ans={1}'.format(nums, sln.maximumDifference(nums)))
nums = [9,4,3,2]
print('nums={0}, ans={1}'.format(nums, sln.maximumDifference(nums)))
nums = [1,5,2,10]
print('nums={0}, ans={1}'.format(nums, sln.maximumDifference(nums)))