Leetcode2016:增量元素之间的最大差值(simple, dp)

本文介绍了一道LeetCode上的编程题目,要求计算数组中满足条件的两个元素之间的最大差值。通过解题分析,提出了利用动态规划的方法来解决此问题,避免了两两比较的高复杂度。代码实现部分展示了如何通过递归调用来找到最大差值,最终返回结果。文章还提供了多个示例来验证算法的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 题目描述

2. 解题分析

3. 代码实现


1. 题目描述


给你一个下标从 0 开始的整数数组 nums ,该数组的大小为 n ,请你计算 nums[j] - nums[i] 能求得的 最大差值 ,
其中 0 <= i < j < n 且 nums[i] < nums[j] 。
返回 最大差值 。如果不存在满足要求的 i 和 j ,返回 -1 。

示例 1:
输入:nums = [7,1,5,4]
输出:4
解释:
最大差值出现在 i = 1 且 j = 2 时,nums[j] - nums[i] = 5 - 1 = 4 。
注意,尽管 i = 1 且 j = 0 时 ,nums[j] - nums[i] = 7 - 1 = 6 > 4 ,但 i > j 不满足题面要求,所以 6 不是有效的答案。

示例 2:
输入:nums = [9,4,3,2]
输出:-1
解释:
不存在同时满足 i < j 和 nums[i] < nums[j] 这两个条件的 i, j 组合。

示例 3:
输入:nums = [1,5,2,10]
输出:9
解释:
最大差值出现在 i = 0 且 j = 3 时,nums[j] - nums[i] = 10 - 1 = 9 。
 
提示:
n == nums.length
2 <= n <= 1000
1 <= nums[i] <= 109

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-difference-between-increasing-elements
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题分析

        最Naive的办法是对数组中的所有数做两两比较求差值,然后求其最大值。这样的复杂度是O(n^2)。但是应该有更好的办法。

        记题目所要求的最大差值为f(nums),考虑序列中最大值为nums[k],则数组前半部分nums[0],nums[1],...,nums[k]的最大差值可以记为f(nums[0:k])(python-style slicing),数组后半部分的最大差值可以记为f(nums[k:]),很明显它们之间满足如下关系:

f(nums)=max(f(nums[0:k]),f(num[k:]))

        我们可以得到基于以上递推关系的基于递归调用的动态规划解决方法。

        

        针对输入数组,先找到最大值,以及到该最大值为止的前半部分的最小值。这样可以得到前半部分的最大差值,然后再通过递归调用求后半部分的最大差值,两个最大差值的较大的一个即为所求结果。如果所求得的最大差值为0就表示没有符合条件的,返回-1.

        

3. 代码实现

from typing import List

class Solution:
    def maximumDifference(self, nums: List[int]) -> int:        
        def dp(start,end):
            # print('dp({0},{1})'.format(start,end) )
            # baseline case
            if start==end:
                return 0
            
            maxv = nums[start]
            maxidx = start
            # Find the maximum value
            for k in range(start,end):
                if nums[k] > maxv:
                    maxv = nums[k]
                    maxidx = k
            # Find the minimum value within period [start,k]
            minv = nums[start]                
            for k in range(start,maxidx):
                if nums[k] < minv:
                    minv = nums[k]                                    
            maxdiff0 = maxv - minv
            maxdiff1 = dp(maxidx+1,end)
            return max(maxdiff0,maxdiff1)
    
        ans = dp(0,len(nums))
        return  ans if ans > 0 else -1

if __name__ == '__main__':        
    
    sln = Solution()    
    nums = [7,1,5,4]
    print('nums={0}, ans={1}'.format(nums, sln.maximumDifference(nums)))
    
    nums = [9,4,3,2]
    print('nums={0}, ans={1}'.format(nums, sln.maximumDifference(nums)))
    
    nums = [1,5,2,10]
    print('nums={0}, ans={1}'.format(nums, sln.maximumDifference(nums)))

本系列总目录:笨牛慢耕的Leetcode解题笔记(动态更新。。。)icon-default.png?t=M1L8https://chenxiaoyuan.blog.csdn.net/article/details/123040889

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值