- 博客(403)
- 资源 (22)
- 收藏
- 关注
原创 TNNLS-2024《Manifold Peaks Nonnegative Matrix Factorization (MPNMF)》
总结来说,流形峰算法通过在测地距离空间中计算密度和距离,并利用一个乘积形式的无量纲指标来识别数据流形上的关键点,这些点构成了数据流形的骨干,为后续的、基于这些点构建聚类中心的MPNMF算法提供了坚实的基础。正如论文所述,流形峰的核心目的是识别出数据流形上的关键点,这些点能够表征流形的“骨干”(backbone),排除噪声和离群点的干扰,从而为后续的聚类中心构建提供一个高质量、有代表性的基础。好的,我们来详细介绍一下流形峰(Manifold Peaks, MPs)的实现过程和背后的数学原理。
2025-08-16 11:27:17
221
原创 TFS-2025《Fast Fuzzy Graph Cut》
论文的核心思想是提出一种快速模糊图切分聚类方法(Fast Fuzzy Graph Cut, FFGC),旨在解决传统图切分聚类(如Ratio Cut和Normalized Cut)的三大局限:放松导致信息丢失和后处理(如k-means)导致解偏差;构建常规相似图和谱分解的计算复杂度高(O(n^2 d) + O(n^3));二值指示矩阵无法处理现实中样本间的模糊边界和重叠特征,解释性差。FFGC通过锚点图(anchor graph)替换常规相似图来降低复杂度(线性于n),直接求解模糊指示矩阵F(行和为1、非负
2025-08-16 10:44:50
325
原创 PAMI-2025《Fair Clustering Ensemble With Equal Cluster Capacity》
令γik∣πk∩Gi∣∣Gi∣γik∣πk∩Gi∣/∣Gi∣为簇πk\pi_kπk在群组GiG_iGi中的比例(注意:这与传统ηik\eta_i(k)ηik方向相反,是簇在群组中的占比)。簇πk\pi_kπkfairnessCCEπkmini∈1Tmincγik1cγikfairnessCCEπki∈。
2025-08-16 10:13:51
190
原创 ECCV-2018《Variational Wasserstein Clustering》
该论文提出了一个基于最优传输(optimal transportation) 理论的新型聚类方法,称为变分Wasserstein聚类(Variational Wasserstein Clustering, VWC)。其核心思想有三点:建立最优传输与k-means聚类的联系:作者指出k-means聚类问题本质上等价于求解一个特殊的Wasserstein重心问题(Wasserstein barycenter problem),当目标是一个单变量测度时,这被称为Wasserstein均值问题(Wasserstei
2025-08-13 21:09:05
600
原创 《Power Voronoi图的数学原理》
Power Voronoi图(也称为加权Voronoi图或幂图)是标准Voronoi图的推广形式,在最优传输理论、计算几何和机器学习中有着重要应用。以下系统阐述其数学原理:给定欧氏空间 Rn\mathbb{R}^nRn 中的一组点 {y1,y2,…,yk}\{y_1, y_2, \dots, y_k\}{y1,y2,…,yk},标准Voronoi图将空间划分为 kkk 个区域:Vj={m∈Rn∣∥m−yj∥≤∥m−yi∥,∀i≠j}V_j = \{m \in \mathbb{R}^n \mid \|
2025-08-13 21:08:55
592
原创 TKDE-2024《Eigenvalue Ratio Inspired Partition Learning and Fusion for Multiple Kernel Clustering》
实验在AR10P, Carcinom, TOX171, PIE10P, ORL, CCV, Flower17, Flower102等8个基准多核数据集上进行,与AMKKM, MKKM, MKKM-MR, ONKC, SMKKM, LSWMKC, MLFA, OP-LFMVC, LFMKC-PGR等9种SOTA方法进行了比较。)都不是最优的,过低的维度会导致信息不足,而过高的维度会引入冗余信息,从而损害聚类性能。个独立的行优化问题来高效求解,每个问题都有一个近似的闭式解。为了解决这个问题,论文提出了。
2025-08-12 11:04:50
765
原创 TNNLS-2024《Parameter-Free Multiview K-Means Clustering With Coordinate Descent Method》
PFMVKM通过将单视图k-means方法扩展到多视图场景,实现了参数无关的多视图聚类。该方法能够直接计算聚类指示矩阵,无需同时学习聚类中心矩阵和指示矩阵,同时通过坐标下降法实现了高效的优化。实验结果表明,PFMVKM在多个数据集和评估指标上优于现有方法,且计算效率高。PFMVKM解决了多视图聚类中参数调优的难题,为多视图聚类研究提供了新的思路。未来工作可能集中在将PFMVKM扩展到处理高维数据和不完整多视图数据上,进一步提升其在实际应用中的适用性。
2025-08-11 10:39:11
1157
原创 TC-2024《Co-Clustering by Directly Solving Bipartite Spectral Graph Partitioning》
DBSGP通过直接求解二分图谱聚类问题,解决了传统方法中需要后处理的局限性。该方法能够直接得到离散的聚类结果,且学习到的二分图恰好有ccc个连通分量,与聚类数一致。理论分析和实验结果表明,DBSGP在合成数据集和真实世界数据集上都表现出色,特别是对噪声具有良好的鲁棒性。该方法在推荐系统、生物信息学、协同过滤和文本挖掘等领域有广泛的应用前景。未来工作可能集中在进一步提高算法效率和扩展到更复杂的多视图聚类场景。
2025-08-11 10:08:31
613
原创 TNNLS-《Joint Structured Bipartite Graph and Row-Sparse Projection for Large-Scale Feature Selection》
RS2BLFS通过将结构化二分图学习与行稀疏投影学习集成,解决了传统特征选择方法中特征选择与图构建分离的问题。该方法同时执行特征选择和多中心聚类,特别适合非球形大规模数据。理论分析和实验结果表明,RS2BLFS在特征选择和聚类任务上优于现有方法,具有良好的收敛性和可扩展性。未来工作将集中在设计更简洁的模型和更高效的算法上。
2025-08-11 09:43:32
852
原创 NIPS-2019《Learning Feature-Sparse Principal Subspace》
这篇论文的核心思想是解决特征稀疏主子空间估计(Feature Sparse PCA, FSPCA)这一具有挑战性的问题。其核心创新点可以概括为以下几点:论文的目标是求解特征稀疏主子空间,其目标函数是一个标准的主成分分析(PCA)方差最大化问题,但增加了一个关键的行稀疏性约束:maxW∈Rd×m Tr(WTAW)s.t.WTW=Im×m,∥W∥2,0≤k\max_{W \in \mathbb{R}^{d \times m}} \ Tr(W^TAW) \quad \text{s.t.} \quad W^TW
2025-08-05 11:44:03
784
原创 PAMI-2025 unsupervised Discriminative Feature Selection with ℓ₂,₀-Norm Constrained Sparse Projection
该论文的核心思想是提出一种名为 -范数约束稀疏投影的无监督判别性特征选择(Unsupervised Discriminative Feature Selection with -Norm Constrained Sparse Projection, SPDFS)的新方法。其核心思想可以概括为以下几点:总而言之,SPDFS 的核心思想是将无监督特征选择、判别性投影学习和模糊聚类三者统一到一个联合优化框架中,通过 -范数直接控制所选特征的数量。论文提出的目标函数(在文中记为问题(6))如下:minW,Y,M∑
2025-08-03 17:01:42
839
原创 TFS-2022《A Novel Data-Driven Approach to Autonomous Fuzzy Clustering》
上,提出了一种创新的模糊聚类算法 AFC。它通过高斯型隶属度函数和自调整核宽度实现数据驱动的聚类,支持静态和流式数据。AFC 的主要贡献在于自动化和适应性,实验结果显示其在多种数据集上性能优越。算法实现清晰,分为静态和流式两种场景,具有较高的实用价值。论文中未直接给出 AFC 的目标函数公式,但根据其描述和与传统模糊聚类的相似性,可以推测其目标函数类似于模糊C-均值(FCM)的形式。AFC 的设计目标是实现一种无需过多人工干预、能够自适应数据特征的模糊聚类方法。
2025-08-02 16:45:55
690
原创 TNNLS-2022《Reweighted-Boosting: A Gradient-Based Boosting Optimization Framework》
Reweighted-Boosting通过重新分配基学习器权重,结合梯度下降优化,显著改进了传统提升算法的性能。其核心创新在于解决局部最优问题,通过理论证明和实验验证展示了优越性。算法实现简单高效,适用于多种基学习器和大规模数据集,具有广泛的实用价值。
2025-07-31 07:50:55
809
原创 《关于yolov10模型的详解分析》
有MMM个预测框(predictions),记为p1p2pMp1p2...pM有NNN个真实目标(GT),记为g1g2gNg1g2...gN定义匹配矩阵X∈RM×NX∈RM×N,其中xijx_{ij}xij表示将预测pip_ipi分配给 GTgjg_jgj的“运输量”(匹配强度)项目数学表达成本矩阵Kexp−CϵKexp−Cϵ最优解形式X∗d。
2025-07-27 17:14:19
971
原创 DSP-2023《Multi-view clustering for multiple manifold learning via concept factorization》
这篇论文提出了一种创新的多视图聚类方法 MMLCF,通过结合概念分解、流形正则化和一致性约束,显著提升了多视图数据的聚类性能。实验结果表明,MMLCF 在多个基准数据集上优于传统单视图和多视图聚类方法,具有较强的鲁棒性和高效性。论文在多个公开数据集上评估了 MMLCF 的性能,并与基线方法(如 K-means、CF、NMF、NCMDF、NMMF、PSNMF、MCGL 等)进行了比较。MMLCF 的目标函数旨在最小化多视图数据的重构误差,同时保留每个视图的流形结构,并通过一致性控制项协调不同视图的表示。
2025-07-09 10:43:07
531
原创 PR-2023《Auto-attention mechanism for multi-view deep embedding clustering》
提出一种,解决传统多视图聚类方法的两个瓶颈:目标函数整合四部分损失:min⎩⎨⎧自编码器损失i1∑n∥Xi−acfvi∥F2自注意力损失i1∑n∥vi−adgXi∥F2β聚类损失i∑j∈Nit∑simxixj∥zi−zj∥2i∑j∑pijlogqijpij。
2025-07-09 10:36:53
1118
原创 AI-2023《Multi-view subspace clustering for learning joint representation via low-rank sparse》
MSCLR 通过联合低秩稀疏表示和流形正则化,解决了多视图子空间聚类中一致性与特定性表示的平衡问题。其创新性目标函数设计、高效的 ALM 优化以及在 9 个数据集上的显著性能提升(平均 ACC/NMI 提升 5–15%),证实了方法的有效性。未来方向包括处理不完整视图和端到端深度表示学习。
2025-07-09 10:21:41
310
原创 关于特征选择与特征提取的本质思考
特点核心说明实际意义原始特征保留不生成新特征,仅筛选子集维持可解释性与业务逻辑一致性目标关联驱动依赖特征与预测任务的相关性确保所选特征对模型有实际贡献冗余性消除识别并移除重复信息特征提升模型效率,避免过拟合组合优化搜索在指数级空间中寻找近似最优子集平衡计算成本与效果的关键挑战任务与数据依赖性结果因数据和任务而异需针对具体场景重新评估计算高效性复杂度通常低于特征提取适用于实时系统或超大规模数据噪声过滤剔除低方差或随机特征增强模型泛化能力。
2025-07-09 09:34:32
877
原创 ESA-2024《Joint Projected Fuzzy Neighborhood Preserving C-means Clustering with Local Adaptive Learn》
PFNPCM通过联合优化聚类、降维与图学习,解决了传统方法在低维空间违反流形假设的问题。其核心创新——模糊局部相似性度量GijG_{ij}Gij和ℓ21\ell_{2,1}ℓ21-范数鲁棒设计,在多个数据集上显著提升聚类精度(最高+15%),且对噪声和异常值具有强鲁棒性。未来工作可探索参数γ\gammaγ的自适应选择及多目标优化的进一步加速。GijG_{ij}Gij是流形学习与模糊聚类的桥梁性创新数学本质:基于图结构的条件惩罚项算法角色。
2025-07-08 19:42:35
868
原创 NeurIPS-2023《A Definition of Continual Reinforcement Learning》
这篇论文为持续强化学习提供了首个系统的理论定义,填补了该领域的理论空白。虽然没有提出具体的算法,但它为后续研究奠定了坚实的基础。开发专门针对 CRL 的高效优化算法;构建标准化的 CRL 基准测试平台;探索 CRL 在现实世界中的应用,如机器人、自动驾驶、个性化推荐等。如果你希望我进一步结合这篇论文的内容,或者你想了解某一部分的扩展分析,请随时告诉我!
2025-07-01 22:02:20
696
原创 PR-2025《Scaled Robust Linear Embedding with Adaptive Neighbors Preserving》
这些自适应权重可以被视为局部流形结构的弹性变形系数,能够动态调整局部邻域的大小,从而减少由于线性嵌入与非线性嵌入之间的差距带来的影响。传统方法通过保留样本点间的亲和关系来提取数据的本质结构,但这种方法在某些情况下无法有效捕捉到数据的全局或局部特性。此外,线性嵌入假设数据具有全局线性结构,这种假设容易受到不同局部区域耦合以及空间尺度差异的影响,导致嵌入结果失真。通过上述步骤,SLE 能够有效地在低维空间中保留数据的本质结构,同时处理噪声和异常值的影响。独立求解,使用拉格朗日乘数法得到最优解。
2025-07-01 21:57:40
895
原创 关于latex括号跨行问题
单个括号跨多行:使用\left(和\right.开始,\left.和\right)结束。多个括号并列跨多行:为每个括号单独使用\left和\right。嵌套括号跨多行:使用多重\left和\right,注意匹配顺序。手动控制括号大小:使用\big\Big\bigg\Bigg替代\left和\right。在 LaTeX 中,如果你想手动控制括号的大小(而不是使用\left和\right自动调整),可以使用以下命令来让括号变大想要的效果推荐命令稍微大一点\big(再大一些\Big(明显更大。
2025-06-27 10:25:23
1091
原创 SIAM-2011《Weighted Graph Compression for Parameter-free Clustering With PaCCo》
PaCCo通过将加权图聚类问题转化为数据压缩问题,结合MDL原理和二分k均值策略,实现了无参数、自动化的高效聚类。其目标函数通过最小化编码成本优化聚类结构,考虑边权重和连接性,优化过程通过递归分割和迭代更新实现。实验证明PaCCo在合成和真实数据上优于Metis、MCL和SpectralZM,运行时间显著优于无参数的SpectralZM。算法的实现清晰,结合启发式初始化和MDL终止准则,适合处理复杂加权图数据,如蛋白质交互网络,具有广泛的应用前景。
2025-06-24 21:36:10
767
原创 NIPS-2001《Partially labeled classification with Markov random walks》
该论文提出了一种创新的基于马尔可夫随机游走的分类方法,结合少量标记样本和未标记数据的流形结构,通过时间尺度正则化和自适应调整实现了高效分类。最大平均margin方法的闭式解和实验结果表明其在少量标记样本下的优越性,尤其适用于文本分类等高维数据场景。算法实现清晰,参数选择具有理论依据,提供了机器学习领域半监督学习的宝贵思路。
2025-06-24 21:06:51
874
原创 NIPS-2002《Learning from Labeled and Unlabeled Data with Label Propagation》
这篇论文提出了一种创新的标签传播算法,充分利用未标记数据的结构信息,通过图模型和概率传播实现半监督分类。其目标函数结合了传播固定点和熵最小化,优化过程通过迭代和参数学习实现。实验结果展示了算法在合成和现实数据集上的优越性,尤其在类比例调整和特征选择方面的贡献。算法实现简单但理论严谨,与其他方法(如Markov随机游走、均值场近似)的联系进一步增强了其学术价值。
2025-06-23 19:11:20
535
原创 IJCAI-2020《Semi-supervised Clustering via Pairwise Constrained Optimal Graph》
论文提出了一种基于图的半监督聚类方法,称为Pairwise Constrained Optimal Graph (PCOG),旨在通过引入成对约束(必须链接 Must-Link 和不能链接 Cannot-Link)来指导聚类过程,解决传统图聚类方法在处理不能链接约束和多类聚类时的局限性。其核心思想包括:该方法解决了传统半监督聚类中不能链接约束难以处理和多类聚类灵活性不足的问题,显著提升了聚类性能。论文的目标函数旨在优化图的亲和矩阵SSS,使其满足成对约束并具有ccc个连通分量。初始目标函数形式为:minS
2025-06-23 15:05:40
881
原创 TKDE-2025《Graph-Based Clustering: High-Order Bipartite Graph for Proximity Learning》
这篇论文提出了一种创新的高阶二部图聚类方法(HBSGL),通过结合高阶邻近信息和二部图结构,解决了传统邻近矩阵学习的信息缺失和高计算复杂度问题。其目标函数通过自适应权重融合高阶信息,并在Laplace秩约束下优化聚类结构。优化算法利用SVD分解和迭代更新,实现了高效收敛。实验结果验证了HBSGL在聚类性能、时间效率和可扩展性上的优越性。算法实现过程清晰,超参数易调,适合大规模无监督聚类任务,具有较高的学术和应用价值。
2025-06-22 20:48:40
825
原创 TIP-2025《Data Subdivision Based Dual-Weighted Robust Principal Component Analysis》
DRPCA 通过数据细分和双权重机制显著提高了 PCA 的鲁棒性,解决了传统 PCA 对异常值敏感的问题。其目标函数通过优化投影矩阵、数据均值和权重向量,结合迭代优化算法,实现了高效的降维和异常检测。实验结果表明,DRPCA 在重构、聚类、分类和异常检测任务中均优于现有方法,尤其在处理噪声和异常值时表现出色。算法实现简单且收敛性好,适用于大规模数据集和实际应用场景。
2025-06-22 20:11:31
1152
原创 2015-ACM《Dimensionality Reduction for $k$-Means Clustering and Low Rank Approximation》
这篇论文提供了一种通用的降维框架,通过投影代价保留草图统一处理kkk-均值聚类和低秩近似问题,显著降低了计算复杂度。目标函数基于Frobenius范数的投影误差,优化过程通过构造低维草图并在草图上求解近似解。主要贡献包括改进的误差界、低维度的kkk-均值专用方法以及统一的理论分析框架。实现过程结合了SVD、随机投影和特征选择等多种技术,适用于不同的应用场景。尽管缺乏具体的实验数据,论文的理论结果为实际实现提供了坚实的指导。
2025-06-20 21:28:19
517
原创 2023-NIPS《Joint Feature and Differentiable k-NN Graph Learning using Dirichlet Energy》
论文通过Dirichlet能量提出了一种新颖的深度无监督特征选择框架,联合优化特征选择和k-NN图学习,利用Gumbel Softmax和最优传输技术实现可微分优化。其目标函数清晰,优化过程高效,实验结果验证了其在多种数据集上的优越性能。然而,模型对超参数mmm的敏感性、计算复杂度以及对特征标准化的依赖是主要局限性。未来可通过自适应特征选择、噪声鲁棒性增强和高效算法优化进一步改进,使其更适合大规模、复杂数据场景。
2025-06-13 11:34:36
480
原创 IJCAI-2017《Multi-Class Support Vector Machine via Maximizing Multi-Class Margins》
这篇论文提出了一种新颖的多分类SVM模型,通过最大化每对类别之间的间隔,结合高效的SVRG优化算法,实现了在分类精度和收敛速度上的优越性能。其主要贡献在于理论上的等价性分析、模型的高效性和对半监督学习的扩展。实验结果表明,该模型在多种数据集上表现优异,特别是在资源受限场景下相比传统OvsO方法更具优势。算法实现上,SVRG的引入确保了非凸问题的高效优化,适合大规模多分类任务。
2025-06-13 11:31:14
636
原创 IJCAI-2021《Discrete Multiple Kernel $k$-means》
DMKKM通过直接优化离散聚类指示矩阵和核系数,解决了传统MKKM的信息丢失、核冗余和超参数依赖问题。其目标函数巧妙地结合核相关性度量和聚类质量优化,通过高效的坐标下降法和QP求解实现快速收敛。实验结果验证了其在多个数据集上的优越性能和实用性,为多核聚类提供了一种高效、鲁棒且无参数的解决方案。
2025-05-26 08:26:47
296
原创 NIPS-2013《Distributed PCA and $k$-Means Clustering》
该论文通过分布式PCA和核集的结合,解决了分布式kkk-均值聚类中的高维数据通信成本问题。算法通过局部和全局PCA降维,结合核集构造,实现了与数据大小和维度无关的通信成本,同时理论上保证了聚类质量。实验结果验证了算法在真实数据集上的有效性,特别是在高维数据场景下,通信成本降低显著,聚类成本增加极小。
2025-05-24 10:57:34
844
原创 TIT-2014《Randomized Dimensionality Reduction for $k$-means Clustering》
该论文通过线性代数视角和随机化技术,为kkk-means 聚类提供了高效的降维方法,显著降低了计算复杂性,同时保持理论上的近似保证。特征选择和特征提取算法的实现过程清晰,结合了现代矩阵分解和随机投影技术。实验结果进一步验证了算法在实际数据集上的有效性,为未来研究1ε1ε近似误差的降维方法提供了方向。
2025-05-24 10:42:52
865
原创 NIPS-2012《Accelerated $k$-means with adaptive distance bounds》
该论文提出了一种高效的kkk-means加速算法,通过自适应调整距离下界数量bbb,在中等维度数据上实现了比Elkan和Hamerly算法更好的性能。其核心创新在于结合两者的优点并动态调参,实验结果验证了其在k≥50k \geq 50k≥50和中等维度(20-120维)场景下的优越性。算法实现通过维护上界、下界和中心移动距离,利用三角不等式减少距离计算,同时自适应调整bbb以优化开销。
2025-05-24 10:04:00
281
2013CVPR 点云超体分割论文Jeremie Papon
2021-09-24
2012顶会文章点云Don算法论文
2021-09-24
图像处理岗面试60题及其答案解析.pdf
2020-03-07
yolov5-obb旋转目标检测直接运行版,只需配置好虚拟环境就可直接运行,包含部分demo数据集
2023-04-12
yolov7-pose TensorRT推理 window平台以及ubuntu平台都可
2023-02-10
ORB-SLAM2 windows下免配置第三库,工程已配置好,下载配置好图片路径即可直接运行
2022-07-05
imagenet2012数据集及标签.rar
2021-06-10
LDA算法原理详解及代码,另附LDA数学八卦高清PDF版笔记整理
2018-04-01
Benchmark Datasets.rar
2019-06-16
YaleFace数据集包含mat文件以及原图.rar
2019-12-13
PIE图片数据集包含原图.rar
2019-12-13
FSRobust_ALM.m
2020-06-21
《Python数据挖掘入门与实践 》 作者:Robert Layton (高清pdf版附代码及部分数据集,彩图)
2018-03-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人