一、流程图
二、流程描述
-
加载文档
-
读取文档
-
文档分割
-
文档向量化
-
用户输入内容
-
内容向量化
-
文本向量中匹配出与用户提问的向量相似的top_k个
-
匹配出的文本作为上下文和问题一起添加到prompt中
-
提交给LLM生成答案
三、RAG实现步骤
1、步骤一:构建数据库索引(Index)
a) 加载不同来源,不同格式文档;
b) 将文档分割成块(Chunk);
c)对切块的数据进行向量化并存储到向量数据库;
2、步骤二:检索-增强(Retrieval-Augmented)
a) 通过向量相似度检索与问题最相关的k个文档;
b) 检索召回知识附加上下文填充至prompt;
3、步骤三:生成
a) 检索增强提示输入至LLM生成请求响应