一图看懂大模型中RAG的流程实现

一、流程图

在这里插入图片描述

二、流程描述

  • 加载文档

  • 读取文档

  • 文档分割

  • 文档向量化

  • 用户输入内容

  • 内容向量化

  • 文本向量中匹配出与用户提问的向量相似的top_k个

  • 匹配出的文本作为上下文和问题一起添加到prompt中

  • 提交给LLM生成答案

三、RAG实现步骤

1、步骤一:构建数据库索引(Index)

a) 加载不同来源,不同格式文档;
b) 将文档分割成块(Chunk);
c)对切块的数据进行向量化并存储到向量数据库;

2、步骤二:检索-增强(Retrieval-Augmented)

a) 通过向量相似度检索与问题最相关的k个文档;
b) 检索召回知识附加上下文填充至prompt;

3、步骤三:生成

a) 检索增强提示输入至LLM生成请求响应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

初夏0811

你的鼓励将是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值