论文速读Backbone系列一:点云Transformer结合、PointNet++改进、点云卷积核设计

这篇博客探讨了3D点云处理的最新研究,重点关注点云Transformer的改进,如PCT和Point Transformer,以及PointNet++的优化和卷积核设计,如PointCNN和Kpconv。文章总结了多篇论文的关键思想,包括利用Transformer捕捉全局特征,通过PointNet++提取局部信息,以及设计X变换矩阵和关系形状卷积解决点云的顺序问题。此外,还介绍了Point-Voxel CNN(PVCNN)如何结合体素和点云方法的优点,提高3D深度学习的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


如有错误,恳请指出。


对一些经典论文进行快速思路整理,以下内容主要关注的是3d点云的backbone设计,包括transformer的应用,卷积核的设计,PointNet++网络的改进。

一、Transformer改进

1. 《PCT: Point Cloud Transformer》(2020)

在这里插入图片描述

1)提出Offset Atention,在原本的self-attention中的LBR(Fa)改为LBR(Fin-Fa),同时魔改了norm方法。其中这里的Fin是原始点特征,Fa是进行self-attention变换之后的特征
2)提出Neighbor Embedding,利用attention可以捕获全局特征但是缺少局部特征,所以用PointNet++来提取一些局部特征,作为transformer的输入


2. 《Point Transformer》(2020)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clichong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值