如有错误,恳请指出。
对一些经典论文进行快速思路整理,以下内容主要关注的是3d点云的backbone设计,包括transformer的应用,卷积核的设计,PointNet++网络的改进。
一、Transformer改进
1. 《PCT: Point Cloud Transformer》(2020)
1)提出Offset Atention,在原本的self-attention中的LBR(Fa)改为LBR(Fin-Fa),同时魔改了norm方法。其中这里的Fin是原始点特征,Fa是进行self-attention变换之后的特征
2)提出Neighbor Embedding,利用attention可以捕获全局特征但是缺少局部特征,所以用PointNet++来提取一些局部特征,作为transformer的输入