OpenPCDet系列 | 7.PointPillars模型测试KITTI数据集流程解析

本文详细解析了OpenPCDet中PointPillars模型在测试KITTI数据集时的核心流程,包括AnchorHeadTemplate.generate_predicted_boxes的预测框生成,Detector3DTemplate.post_processing的后处理,KittiDataset.generate_prediction_dicts的预测结果转换,以及KittiDataset.evaluation的性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型的测试流程

对于模型来说,训练过程是为了计算构建损失训练模型的参数,验证过程是为了测试模型当前参数的效果。所以,对于模型结构来说需要分别为测试过程和训练过程进行分别规划。在点云的3d检测中,这里主要体现在dense_head预测层中。对于模型来说,其与训练流程的区别结构图如下:
在这里插入图片描述

  • 对于dense_head处理的区别:
# 功能:构建PointPillar的dense head模块部分
class AnchorHeadSingle(AnchorHeadTemplate):
    def __init
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clichong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值