OpenPCDet系列 | 5.2 PointPillars算法——PointPillarScatter伪图像BEV特征构建模块

本文详细介绍了OpenPCDet中的PointPillarScatter模块,该模块用于将点云数据转换为BEV(Bird's Eye View)视图的特征矩阵。在PointPillarScatter初始化中,主要设置配置和grid size。在前向传播过程中,通过映射点云到BEV空间,构造伪图像特征,将voxel特征填充到对应网格,形成稀疏的BEV特征矩阵,为后续检测任务提供输入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenPCDet的整个结构图:
在这里插入图片描述

PointPillarScatter模块

在进行了PillarVFE编码后,此时的batch_dict更新如下所示,追加了pillar_features字段,表示每个voxel的特征,随后进行Map_to_BEV模块处理。

在这里插入图片描述

在Map_to_BEV结构中,在对应的__init__文件下,也可以找到全部可供选择的模块,在PointPillars算法中选择使用的PointPillarScatter模块。

# 根据MODEL中的MAP_TO_BEV确定选择的模块
__all__ = {
   
   
    'HeightCompression
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clichong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值