如果nvidia-smi
显示的CUDA版本为12.2,而nvcc -V
显示的是11.8版本,这通常不会影响在CUDA 11.8环境下使用与CUDA 11.8兼容的PyTorch版本。这种情况下的关键点是理解nvidia-smi
和nvcc
显示的CUDA版本所代表的含义:
-
nvidia-smi
显示的CUDA版本:这代表了你的NVIDIA驱动内置支持的CUDA版本。这是驱动程序级别的支持,主要影响的是GPU的识别和基础驱动层面的CUDA兼容性。 -
nvcc -V
显示的CUDA Toolkit版本:这代表了安装在你的系统上的CUDA Toolkit的版本。CUDA Toolkit包括了开发和运行CUDA应用所需的编译器、库和工具。
当使用PyTorch或其他依赖CUDA的库时,库的运行时会与CUDA Toolkit进行交互,而不是直接与驱动程序内的CUDA版本交互。这意味着,只要CUDA Toolkit的版本与你使用的库兼容,并且NVIDIA驱动足够新以支持该版本的CUDA Toolkit(在你的情况下,驱动支持CUDA 12.2,因此也会支持11.8),就可以正常使用。
因此,即使nvidia-smi
显示为CUDA 12.2,只要你安装了CUDA Toolkit 11.8,并且使用的PyTorch版本是为CUDA 11.8编译的,就不应该有兼容性问题。确保你的环境变量(如PATH
和CUDA_HOME
)正确指向CUDA Toolkit 11.8的安装位置,这样PyTorch和其他依赖CUDA的应用程序就可以正确找到并使用它。
总结一下,只要确保以下几点,你就可以在CUDA 11.8环境下正常使用PyTorch:
- NVIDIA驱动兼容CUDA 11.8(即支持的CUDA版本高于或等于11.8)。
- 系统安装了CUDA Toolkit 11.8。
- 使用的PyTorch版本是针对CUDA 11.8编译的。
- 环境变量正确设置,以便软件能找到正确的CUDA Toolkit版本。