随着人口老龄化进程的加速,摔倒事故逐渐成为威胁老年人健康和安全的主要问题之一。研究表明,摔倒不仅可能导致老年人骨折、头部受伤等严重的身体损伤,还可能引发心理恐惧和行动能力下降,从而降低其生活质量和独立性。如何快速、准确地检测摔倒事件并采取及时的应对措施,是当前智能监护领域的重要研究方向之一。为了解决这一问题,本文设计并实现了一种基于YOLOv8深度学习的人体姿态摔倒识别与语音报警系统。
该系统结合先进的目标检测算法与用户友好的界面开发,具备多样化的输入方式和强大的实时检测能力。具体来说,系统采用了基于PyQt5的用户界面开发技术,能够支持图片、视频以及实时摄像头输入,为用户提供便捷的操作体验。核心检测模块利用了YOLOv8轻量化目标检测模型,通过对人体姿态的分析,实现了对“站立”和“摔倒”两种状态的分类。一旦检测到摔倒事件,系统不仅通过语音模块及时发出报警提示,还能在界面上同步显示目标的置信度、坐标位置及相关信息,帮助用户快速定位事件发生的位置和状态。
为了确保系统在实际应用场景中的表现,本文设计了一套覆盖室内外不同环境的多样化测试数据集,并对模型进行了充分的训练与优化。通过数据增强、超参数调整等技术手段,模型的检测精度得到了显著提升。实验结果表明,系统在复杂场景下对摔倒事件的检测置信度达到92%以上,且检测响应速度小于50毫秒,完全满足实时性要求。同时,系统在应对遮挡、光照变化及背景复杂等问题时表现出较强的鲁棒性,为实际部署提供了技术保障。
系统的可扩展性设计使其能够适应多种应用场景,例如老年人居家安全监测、医疗看护中的患者异常状态检测,以及工业环境中的安全事故预警等。未来,该系统还可结合物联网技术,实现与智能家居设备的联动,为用户提供更为全面和高效的安全保障。
本文提出的基于YOLOv8深度学习的人体姿态摔倒识别与语音报警系统,不仅在技术上实现了高精度和高效率的检测,还在功能设计上体现了以用户为中心的理念。该系统为降低摔倒事故的危害提供了一种智能化的解决方案,具有重要的研究意义和广泛的应用前景。未来的研究将进一步优化模型性能,扩展系统功能,并探索多模态数据融合的可能性,以实现更智能、更精准的摔倒检测与预警。
算法流程
项目数据
通过搜集关于数据集为各种各样的人体姿态摔倒和站立相关图像,并使用Labelimg标注工具对每张图片进行标注,分2检测类别,分别是’摔倒’, ‘站立’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中ÿ