基于YOLOv8深度学习的智慧交通非机动车交通违规行为自动检测系统

随着城市交通的日益复杂,非机动车(如电动自行车、电动滑板车等)的交通违规行为逐渐成为影响道路安全的重要因素。传统的交通违规检测方法依赖人工监控和手动执法,效率低下且难以满足大规模实时监控的需求。因此,基于深度学习的自动化交通违规行为检测系统成为解决该问题的有效途径。

本研究提出了一种基于YOLOv8深度学习模型的智慧交通非机动车交通违规行为自动检测系统,旨在通过实时视频监控自动识别和分类非机动车的违规行为,包括“非机动车横穿马路”和“非机动车斑马线违规”。该系统结合PyQt5框架进行用户界面设计,使得用户可以便捷地操作和查看检测结果。系统的核心是利用YOLOv8模型进行目标检测,通过对非机动车行为的精确识别,实现对交通违规行为的及时监控和预警。

在数据集方面,本研究使用了包含各类非机动车交通行为的标注数据,通过数据增强技术提升模型的泛化能力。通过训练和优化YOLOv8模型,系统能够准确地检测到非机动车的违规行为,并通过界面展示违规的具体位置和时间,辅助交通管理部门进行快速响应。

实验结果表明,该系统在检测非机动车横穿马路和斑马线违规行为时,具有较高的精确度和实时性,能够有效提高智慧交通管理的自动化水平,对交通安全的改善具有重要意义。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

模型训练

Tipps:模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。

YOLOv8是Yolo系列模型的最新王者,各种指标全面超越现有对象检测与实例分割模型,借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,在全面提升改进Yolov5模型结构的基础上实现,同时保持了Yolov5工程化简洁易用的优势。

Yolov8模型网络结构图如下图所示:

2.数据集准备与训练

本研究使用了包含非机动车交通违规图像目标的数据集,并通过 Labelimg 标注工具对每张图像中的目标边界框(Bounding Box)及其类别进行标注。基于此数据集,采用 YOLOv8n 模型进行训练。训练完成后,对模型在验证集上的表现进行了全面的性能评估与对比分析。整个模型训练与评估流程包括以下步骤:数据集准备、模型训练、模型评估。本次标注的目标类别主要集中于非机动车交通违规图像目标。数据集总计包含 1966 张图像,具体分布如下:

训练集:1375 张图像,用于模型学习和优化。
验证集:394 张图像,用于评估模型在未见过数据上的表现,防止过拟合。
测试集:197 张图像,用于最终评估模型的泛化能力。

数据集分布直方图
以下柱状图展示了训练集、验证集和测试集的图像数量分布:

部分数据集图像如下图所示:

部分标注如下图所示:

这种数据分布方式保证了数据在模型训练、验证和测试阶段的均衡性,为 YOLOv8n 模型的开发与性能评估奠定了坚实基础。

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入datasets目录下。

接着需要新建一个data.yaml文件,用于存储训练数据的路径及模

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值