破损图像修复在文物数字化、老照片再现、工业缺陷检测等场景中具有重要意义。针对传统插值算法在彩色图像小区域缺失情况下易产生模糊与色偏的问题,本文提出一种 基于加权邻域插值(Weighted Neighborhood Interpolation, WNI)的彩色图像破损修复算法,并完成了其 MATLAB GUI 可视化实现。算法首先通过阈值分割检测出破损像素,随后在每个缺损点周围构建半径为 20 px 的局部窗口,并引入改进的逆距离加权函数以充分利用各方向上有效像素信息;对 R、G、B 三通道分别执行加权平均,最后归一化得到修复结果。GUI 采用 GUIDE 框架,集成图像导入、参数设定、可视化对比和结果保存等功能。
作者:张家梁(自研改进)
引言
破损图像修复在文物数字化、老照片再现、工业缺陷检测等场景中具有重要意义。针对传统插值算法在彩色图像小区域缺失情况下易产生模糊与色偏的问题,本文提出一种 基于加权邻域插值(Weighted Neighborhood Interpolation, WNI)的彩色图像破损修复算法,并完成了其 MATLAB GUI 可视化实现。算法首先通过阈值分割检测出破损像素,随后在每个缺损点周围构建半径为 20 px 的局部窗口,并引入改进的逆距离加权函数以充分利用各方向上有效像素信息;对 R、G、B 三通道分别执行加权平均,最后归一化得到修复结果。GUI 采用 GUIDE 框架,集成图像导入、参数设定、可视化对比和结果保存等功能。
系统架构
1.系统概述
ImageInpaintingSystem 是一款基于 MATLAB GUIDE 的桌面应用,用来对受损图像进行快速修复。系统遵循三层逻辑架构:界面层(UI)、业务层(BL)、数据层(DL),职责分明,方便后期替换或扩展。
简而言之,界面层负责「看得到、点得到」,业务层负责「算得到」,数据层负责「存得到」。
2.系统流程图
研究方法
本系统采用“距离加权平均” 方法:对每个坏点,取其 41 × 41 邻域内的有效像素,按照1/d²(距离平方的倒数)作为权重分别对R、G、B 三通道做加权平均,再把结果写回坏点位置。
实验结果
下图展示了系统在示例图像上的运行界面与修复效果:
修复质量:
(1)小范围黑色划痕被有效抹平,桥面与天空区域颜色过渡自然;
(2)然而,栏杆的细节纹理略显模糊,暴露距离加权平均对高频纹理保留不足的劣势。
系统实现
本系统完全基于MATLAB平台开发,主要集成以下脚本与模块:
研究结论
距离加权平均算法在小面积、低纹理复杂度缺陷场景下可快速获得肉眼可接受的修复效果,为交互式 GUI 提供实时响应;实现仅依赖基础 MATLAB 函数,无需外部库,单线程 CPU 上即可达到 <0.5 s 的处理速度,适合教学演示或轻量级应用;但其对高频纹理和结构化场景(如文字、重复图案)的保持能力不足,窗口大小与阈值需人为调节,且当缺陷区域过大或集中时容易出现模糊及色偏。
实验环境
硬件配置如表:实验所用硬件平台为惠普(HP)暗影精灵10台式机整机,运行 Windows 11 64 位操作系统,作为模型训练与测试的主要计算平台,能够良好支持Matlab的开发需求。
官方声明
实验环境真实性与合规性声明:
本研究所使用的硬件与软件环境均为真实可复现的配置,未采用虚构实验平台或虚拟模拟环境。实验平台为作者自主购买的惠普(HP)暗影精灵 10 台式整机,具体硬件参数详见表。软件环境涵盖操作系统、开发工具、深度学习框架、MATLAB工具等,具体配置详见表,所有软件组件均来源于官方渠道或开源社区,并按照其许可协议合法安装与使用。
研究过程中严格遵循学术诚信和实验可复现性要求,确保所有实验数据、训练过程与结果均可在相同环境下被重复验证,符合科研规范与工程实践标准。
版权声明:
本算法改进中涉及的文字、图片、表格、程序代码及实验数据,除特别注明外,均由7zcode.张家梁独立完成。未经7zcode官方书面许可,任何单位或个人不得擅自复制、传播、修改、转发或用于商业用途。如需引用本研究内容,请遵循学术规范,注明出处,并不得歪曲或误用相关结论。
本研究所使用的第三方开源工具、框架及数据资源均已在文中明确标注,并严格遵守其相应的开源许可协议。使用过程中无违反知识产权相关法规,且全部用于非商业性学术研究用途。