【模式识别】Fisher线性判别实验报告之MATLAB仿真

该实验报告介绍了使用MATLAB进行Fisher线性判别分析,涉及w1、w2和w3三类样本的两两分类。通过对类内离散度矩阵和类间离散度矩阵的计算,求得了投影方向,并通过实验结果验证了两种求解方法的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 参数

1.题设三个类,每个类均有10个样本,分别为w1,w2,w3,因此采用两两互相分类,最后得出结果;

2.三类样本的均值向量依次为m1,m2,m3;

3.三类样本的类内离散度矩阵依次为S1,S2,S3;

4.对于w1和w2,总类内离散度矩阵为Sw12,类间离散度矩阵为Sb12,通过矩阵特征分解求得的投影方向为wr1_12,通过公式直接求得的投影方向为wr2_12;对于w1和w3、w2和w3,则是以此类推。

二、 实验结果

1.对w1和w2进行分类

通过矩阵特征分解求得的投影方向为
wr1_12 = (-0.8617 0.4965 -0.1046)

通过公式直接求得的投影方向为
wr2_12 = (-0.8303 0.4784 -0.1008)
在这里插入图片描述
图1 对w1和w2分类示意图

2.对w1和w3进行分类

通过矩阵特征分解求得的投影方向为
wr1_13 = (-0.0366 0.9494 -0.3118)

通过公式直接求得的投影方向为
wr2_13 = (-0.0161 0.4167 -0.1369)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codersnote

对学生党 赞赏是鼓励也是鞭策!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值