numpy | tensor | 数组的区分_CodingPark编程公园

本文介绍了numpy库在数据处理中的应用,强调了ndarray对象的多维特性以及与Python列表的区别。同时,阐述了tensor的概念,即任意维度的向量,从标量到张量的层次。还讨论了Python列表作为数据存储的特性和numpy数组的数据一致性要求。最后,通过代码实战展示了numpy操作list和tensor的示例,以及计算tensor平均值的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy

numpy : 主要用于 数据处理

NumPy 中处理数字的常见方式是通过 ndarray 对象。它们与 Python 列表相似,但是可以有任意数量的维度。而且,ndarray 支持快速的数学运算,这正是我们想要的。
由于它可以存储任意数量的维度,你可以使用 ndarray来表示:标量、向量、矩阵或张量。

tensor

tensor: 任意维度的向量

  • 标量是一维向量
  • 数组是二维向量
  • 矩阵是三维向量
  • 张量(tensor)是任意维度的向量

在这里插入图片描述

列表

list: python的内置数据类型,主要用于 数据存储

Python中的list是python的内置数据类型,list中的数据类不必相同
在list中的数据类型保存的是数据所存放的地址,简单的说就是指针,并非数据。

Numpy中的array所存放的数据类型必须全部相同


代码实战

numpy - list
# -*- encoding: utf-8 -*-
"""
@File    :   numlisten.py    
@Contact :   [email protected]
@License :   (C)Copyright 2019-2020, CodingPark

@Modify Time      @Author    @Version    @Desciption
------------      -------    --------    -----------
2020/11/19 下午1:44   AG         1.0         None
"""
import numpy as np
list1 = [1, 2, 3, 'a']
print('list1 => ', list1)

print('\n----------\n')

numpy1 = np.array([1, 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TEAM-AG

编程公园:输出是最好的学习方式

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值