numpy
numpy : 主要用于 数据处理
NumPy 中处理数字的常见方式是通过 ndarray 对象。它们与 Python 列表相似,但是可以有任意数量的维度。而且,ndarray 支持快速的数学运算,这正是我们想要的。
由于它可以存储任意数量的维度,你可以使用 ndarray来表示:标量、向量、矩阵或张量。
tensor
tensor: 任意维度的向量
- 标量是一维向量
- 数组是二维向量
- 矩阵是三维向量
- 张量(tensor)是任意维度的向量
列表
list: python的内置数据类型,主要用于 数据存储
Python中的list是python的内置数据类型,list中的数据类不必相同。
在list中的数据类型保存的是数据所存放的地址,简单的说就是指针,并非数据。
Numpy中的array所存放的数据类型必须全部相同。
代码实战
numpy - list
# -*- encoding: utf-8 -*-
"""
@File : numlisten.py
@Contact : [email protected]
@License : (C)Copyright 2019-2020, CodingPark
@Modify Time @Author @Version @Desciption
------------ ------- -------- -----------
2020/11/19 下午1:44 AG 1.0 None
"""
import numpy as np
list1 = [1, 2, 3, 'a']
print('list1 => ', list1)
print('\n----------\n')
numpy1 = np.array([1, 2