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Reading for This Lecture

• N&W Sections I.1.1-I.1.4

• Wolsey Chapter 1

• CCZ Chapters 1-2
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What is mathematical optimization?
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Mathematical Optimization

• Mathematical optimization is a formal language for describing and
analyzing (optimization) problems.

• The essential elements of an optimization problem are

– a system whose operating state can be specified numerically by
specifying the values of certain variables;

– a set of states considered feasible for the given system that are
contained in a set we can describe; and

– an objective function that defines a preference ordering of the states.

• Before applying mathematical optimization techniques, we must first
create a model, which is then translated into a particular formulation.

• The formulation is a formal description of the problem in terms of
mathematical functions and logical operators.

• The use of mathematical optimization as a language imposes constraints
on how the system can be modeled.

• We often need to make simplifying assumptions and approximations in
order to put the problem into the required form.

• Nevertheless, mathematical optimization is a very general language.
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Modeling

• Our overall goal is to develop a model of a real-world system in order to
analyze the system.

• The system we are modeling is typically (but not always) one we are
seeking to control by determining its “operating state.”

• The (independent) variables in our model represent aspects of the system
we have control over.

• The values that these variables take in the model tell us how to set the
operating state of the system in the real world.

• Modeling is the process of creating a conceptual model of the real-world
system.

• Formulation is the process of constructing a mathematical optimization
problem whose solution reveals the optimal state according to the model.

• This is far from an exact science.
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The Problem Solving Process

• The process solving the original problem consists generally of the following
steps.

– Model: Determine the “real-world” state variables, system constraints,
and goal(s) or objective(s) for operating the system.

– Formulate: Translate these variables and constraints into the form of
a mathematical optimization problem (the “formulation”).

– Solve: Solve the mathematical optimization problem.
– Interpret: Interpret the solution in terms of the real-world system.

• This process presents many challenges.

– Simplifications may be required in order to ensure the eventual
mathematical optimization problem is “tractable.”

– The mappings from the real-world system to the model and back are
sometimes not very obvious.

– Variables that don’t appear in the conceptual model may be needed
to enforce logical conditions or simplify the form of the constraints.

– There may be more than one valid “formulation.”

• All in all, an intimate knowledge of mathematical optimization definitely
helps during the modeling process.
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Example: Sudoku

Challenge: Fill in the grid squares with numbers 0-9 such that

• All squares in the same column have different values, and

• All squares in the same row have different values.

• What should the decision variable be?

• What are the constraints?
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Mathematical Optimization Problems

Elements of the model:

• Decision variables: a vector of variables indexed 1 to n.

• Constraints: pairs of functions and right-hand sides indexed 1 to m.

• Objective Function

• Parameters and Data

The general form of a mathematical optimization problem is:

zMP = sup f(x)

s.t. gi(x) ≤ bi, 1 ≤ i ≤ m

x ∈ Zp × Rn−p

(MP)

Note the use supremum here because the maximum may not exist.
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Feasible Region

• The feasible region of (MP) is

F = {x ∈ Zp × Rn−p | gi(x) ≤ bi, 1 ≤ i ≤ m}

• The feasible region is bounded when

F ⊆ {x ∈ Rm | ∥x∥1 ≤ M}

and unbounded otherwise.

• We take zMP = −∞ when F = ∅ and say the problem is infeasible in
this case.

• We may also have zMP = ∞ when the problem is unbounded, e.g., f is
a linear function and ∃x̂ ∈ F and d ∈ Rn such that

– x+ λd ∈ F for all λ ∈ R+,
– f(d) > 0.

• Note that there is a difference between the feasible region being
unbounded and the problem being unbounded.
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Solutions

• A solution is an assignment of values to variables.

• A solution can hence be thought of as an n-dimensional vector.

• A feasible solution is an assignment of values to variables such that all
the constraints are satisfied, i.e., a member of F .

• The objective function value of a solution is obtained by evaluating the
objective function at the given point.

• An optimal solution (assuming maximization) is one whose objective
function value is greater than or equal to that of all other feasible
solutions.

• Note that a mathematical optimization problem may not have an optimal
solution.

• Question: What are the different ways in which this can happen?
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Possible Outcomes

• When we say we are going to “solve” a mathematical optimization
problem, we mean to determine

– whether it has an optimal value (meaning zMP is finite), and
– whether it has an optimal solution (the supremum can be attained).

• Note that the supremum may not be attainable if, e.g., F is an open set.

• We may also want to know some other things, such as the status of its
“dual” or about sensitivity.
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Types of Mathematical Optimization Problems

• The type of a mathematical optimization problem is determined primarily
by

– The form of the objective and the constraints.
– Whether there are integer variables or not.

• In 406, you learned about linear models.

– The objective function is linear.
– The constraints are linear.

• The most important determinants of whether a mathematical
optimization problem is “tractable” are the convexity of

– The objective function.
– The feasible region.
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Types of Mathematical Optimization Problems (cont’d)

• Mathematical optimization problems are generally classified according to
the following dichotomies.

– Linear/nonlinear
– Convex/nonconvex
– Discrete/continuous
– Stochastic/deterministic

• See the NEOS guide for a more detailed breakdown.

• This class concerns (primarily) models that are discrete, linear, and
deterministic (and as a result generally non-convex)
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The Formal Setting for This Course

• We consider linear optimization problems in which we additionally impose
that x ∈ Zp

+ × Rn−p
+ .

• The general form of such a mathematical optimization problem is

zIP = max{c⊤x | x ∈ S}, (MILP)

where for A ∈ Qm×n, b ∈ Qm, c ∈ Qn. we have

P = {x ∈ Rn | Ax ≤ b} (FEAS-LP)

S = P ∩ (Zp
+ × Rn−p

+ ) (FEAS-MIP)

• This type of optimization problem is called a mixed integer linear
optimization problem (MILP).

• If p = n, then we have a pure integer linear optimization problem, or an
integer optimization problem (IP).

• If p = 0, then we have a linear optimization problem (LP).

• The first p components of x are the discrete or integer variables and the
remaining components consist of the continuous variables.
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Conventions and Notation
If not otherwise stated, the following conventions will be followed for lecture
slides during the course:

• A will denote a matrix of dimension m by n (rational).

• b will denote a vector of dimension m (rational).

• x will denote a vector of dimension n.

• c will denote a vector of dimension n (rational).

• p will be the number of integer variables.

• P will denote a polyhedron contained in Rn, usually given in the form

P = {x ∈ Rn | Ax ≤ b}

• S will be P ∩ (Zp
+ × Rn−p

+ ).

• An integer program is then described fully by the quadruplet (A, b, c, p).

• Vectors will be column vectors unless otherwise noted.

• When taking the product of vectors, we will sometimes leave off the
transpose.
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Additional Notation

• The notation AN will denote a submatrix formed by taking the columns
indexed by set N ⊆ {1, . . . , n}.

• We will sometimes use the notation I = {1, . . . , p} and C = {p +
1, . . . , n}.

• Then AC is a matrix formed by the columns of A corresponding to the
continuous variables.

• Similarly, AI is a matrix formed by the columns of A corresponding to
the integer variables.

• The ith column of A will be denoted Ai.

• The ith row of A will be denoted ai.
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Special Case: Binary Integer Optimization

• In many cases, the variables of an IP represent yes/no decisions or logical
relationships.

• These variables naturally take on values of 0 or 1.

• Such variables are called binary.

• IPs involving only binary variables are called binary integer optimization
problems (BIPs) or 0− 1 integer optimization problems (0− 1 IPs).
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Combinatorial Optimization

• A combinatorial optimization problem CP = (N,F) consists of

– A finite ground set N ,
– A set F ⊆ 2N of feasible solutions, and
– A cost function c ∈ Zn.

• The cost of F ∈ F is c(F ) =
∑

j∈F cj.

• The combinatorial optimization problem is then

max{c(F ) | F ∈ F}

• There is a natural association with a 0− 1 IP.

• Many COPs can be written as BIPs or MILPs.
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Some Notes

• The form of the problem we consider will be maximization by default,
since this is the standard in the reference texts.

• I normally think in terms of minimization by default, so please be aware
that this may cause some confusion.

• Also note that the definition of S includes non-negativity, but the
definition of P does not.

• One further assumption we will make is that the constraint matrix is
rational. Why?

18



ISE 418 Lecture 1 18

Some Notes

• The form of the problem we consider will be maximization by default,
since this is the standard in the reference texts.

• I normally think in terms of minimization by default, so please be aware
that this may cause some confusion.

• Also note that the definition of S includes non-negativity, but the
definition of P does not.

• One further assumption we will make is that the constraint matrix is
rational. Why?

– This is an important assumption since with irrational data, certain
“intuitive” results no longer hold (such as what?)

– A computer can only understand rational data anyway, so this is not
an unreasonable assumption.
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How Difficult is MILP?

• Solving general integer MILPs can be much more difficult than solving
LPs.

• There in no known polynomial-time algorithm for solving general MILPs.

• Solving the associated LP relaxation, an LP obtained by dropping the
integerality restrictions, results in an upper bound on zIP.

• Unfortunately, solving the LP relaxation may not tell us much.

– Rounding to a feasible integer solution may be difficult.
– The optimal solution to the LP relaxation can be arbitrarily far away

from the optimal solution to the MILP.
– Rounding may result in a solution far from optimal.
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Discrete Optimization and Convexity

• One reason why convex problems are “easy” to solve is because convexity
makes it easy to find improving feasible directions.

• Optimality criterion for a linear program are equivalent to “no improving
feasible directions.”

• The feasible region of an MILP is nonconvex and this makes it difficult
to find feasible directions.

• The algorithms we use for LP can’t easily be generalized.

• Although the feasible set is nonconvex, there is a convex set over which
we can optimize in order to get a solution (why?).

• The challenge is that we do not know how to describe that set.

• Even if we knew the description, it would in general be too large to write
down explicitly.

• Integer variables can be used to model other forms of nonconvexity, as
we will see later on.
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The Geometry of an MILP

• Let’s consider again an integer optimization problem

max c⊤x

s.t. Ax ≤ b

x ∈ Zn
+

• The feasible region is the integer points inside a polyhedron.

• Why does solving the LP relaxation not necessarily yield a good solution?
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How General is Discrete Optimization?

• A natural question to ask is just how general this language for describing
optimization problems is.

• Is this language general enough that we should spend time studying it?

• To answer this question rigorously requires some tools from an area of
computer science called complexity theory.

• We can say informally, however, that the language of mathematical
optimization is very general.

• One can show that almost anything a computer can do can be described
as a mathematical optimization problem1.

• Mixed integer linear optimization is not quite as general, but is complete
for a broad class of problems called NP.

• We will study this class later in the course.

1Formally, mathematical optimization can be shown to be a “Turing-complete” language
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Conjunction versus Disjunction

• A more general mathematical view that ties integer programming to logic
is to think of integer variables as expressing disjunction.

• The constraints of a standard mathematical program are conjunctive.

– All constraints must be satisfied.
– In terms of logic, we have

g1(x) ≤ b1 AND g2(x) ≤ b2 AND · · · AND gm(x) ≤ bm (1)

– This corresponds to intersection of the regions associated with each
constraint.

• Integer variables introduce the possibility to model disjunction.

– At least one constraint must be satisfied.
– In terms of logic, we have

g1(x) ≤ b1 OR g2(x) ≤ b2 OR · · · OR gm(x) ≤ bm (2)

– This corresponds to the union of the regions associated with each
constraint.
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MILP Representability

• The connection between integer programming and disjunction is captured
most elegantly by the representability theorem.

Definition 1. A set F ⊆ Rn is MILP representable if there exist A ∈
Qm×n, G ∈ Qr×n, b ∈ Qm such that for

S =
{
(x, y) ∈ (Zp × Rn−p

+ )× (Zt
+ × Rr−t

+ ) | Ax+Gy ≤ b
}
,

we have that F = projx(S).

Theorem 1. (MILP Representability Theorem) A set F ⊆ Rn is MILP
representable if and only if there exist rational polytopes P1, . . . ,Pk

and vectors r1, . . . , rt ∈ Zn such that

F =

k⋃
i=1

(Pi + intcone{r1, . . . , rt})

• Roughly speaking, we are optimizing over a union of polyhedra all of
which have the same recession cone.

• This class of problem can also be obtained simply by introducing a
disjunctive logical operator to the language of linear programming.
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Connection with Other Fields

• Integer programming can be studied from the point of view of a number
of fundamental mathematical disciplines:

– Algebra
– (Projective) Geometry
– Topology
– Combinatorics
∗ Matroid theory
∗ Graph theory

– Logic
∗ Set theory
∗ Formal systems and proof theory
∗ Computability/complexity theory

• There are also (many) other related disciplines:

– Constraint programming
– Answer set programming
– Logic programming
– Satisfiability
– Planning and artificial intelligence
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Basic Themes

Our goal will be to expose the geometrical structure of the feasible region
(at least near the optimal solution). We can do this by

• Convexification

• Outer/Inner approximation

• Lifting and Projection

An important component of the algorithms we consider will be mechanisms
for computing bounds by either

• Relaxation

• Duality

When all else fails, we will employ a basic principle: divide large, difficult
problems into smaller ones.

• Logic (conjunction/disjunction)

• Implicit enumeration

• Decomposition
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