Python拟合正态分布

本文介绍了如何在Python中使用scipy.stats库的norm类对数据进行正态分布拟合,并利用matplotlib进行数据可视化,包括创建随机数据、拟合参数计算以及绘制原始数据和拟合曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Python中,可以使用scipy.stats库中的norm类来拟合正态分布,并使用matplotlib库来进行绘图。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# 创建一些正态分布的数据
mu, sigma = 0, 0.1  # mean and standard deviation
data = np.random.normal(mu, sigma, 1000)

# 使用scipy的norm类来拟合数据
mean, std = norm.fit(data)
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mean, std)

# 绘制原始数据和拟合的正态分布曲线
plt.hist(data, bins=30, density=True, alpha=0.6, color='g')
plt.plot(x, p, 'k', linewidth=2)
title = "Fit results: mu = %.2f,  std = %.2f" % (mean, std)
plt.title(title)

plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB代码顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值