在Python中,可以使用scipy.stats库中的norm类来拟合正态分布,并使用matplotlib库来进行绘图。 import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm # 创建一些正态分布的数据 mu, sigma = 0, 0.1 # mean and standard deviation data = np.random.normal(mu, sigma, 1000) # 使用scipy的norm类来拟合数据 mean, std = norm.fit(data) xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = norm.pdf(x, mean, std) # 绘制原始数据和拟合的正态分布曲线 plt.hist(data, bins=30, density=True, alpha=0.6, color='g') plt.plot(x, p, 'k', linewidth=2) title = "Fit results: mu = %.2f, std = %.2f" % (mean, std) plt.title(title) plt.show()
Python拟合正态分布
于 2024-02-24 17:13:24 首次发布