MATLAB实现图像平滑处理

本文详细介绍了如何在MATLAB中使用平均滤波器、高斯滤波器和中值滤波器对lena.png图像进行平滑处理,展示了三种滤波方法的应用过程和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在MATLAB中,实现图像平滑处理通常可以通过应用滤波器来完成,如平均滤波器、高斯滤波器或中值滤波器。

MATLAB代码如下:


clc;close all;clear all;warning off;%清除变量
rand('seed', 100);
randn('seed', 100);
format long g;


% 读取图像
originalImage = imread('lena.png');
% 转换为灰度图像(如果原图是彩色的)
grayImage = rgb2gray(originalImage);

% 定义滤波器大小(例如,3x3)
h = ones(3, 3) / 9; % 3x3的平均滤波器,所有元素之和为1

% 均值滤波
smoothedImage = imfilter(grayImage, h);

% 显示原图和平滑后的图像

figure;
subplot(1, 2, 1);
imshow(grayImage);
title('原图');
subplot(1, 2, 2);
imshow(smoothedImage);
title('均值滤波平滑');



% 定义高斯滤波器的标准差(例如,sigma = 1.0)和滤波器大小(例如,5x5)
h = fspecial('gaussian', [5 5], 1.0);

% 高斯滤波
smoothedImage = imfilter(grayImage, h);

% 显示原图和平滑后的图像
figure;
subplot(1, 2, 1);
imshow(grayImage);
title('原图');
subplot(1, 2, 2);
imshow(smoothedImage);
title('高斯滤波平滑');


% 定义滤波器大小(例如,3x3)
filterSize = [3 3];

% 中值滤波
smoothedImage = medfilt2(grayImage, filterSize);

% 显示原图和平滑后的图像
figure;
subplot(1, 2, 1);
imshow(grayImage);
title('原图');
subplot(1, 2, 2);
imshow(smoothedImage);
title('中值滤波平滑');

程序结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB代码顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值