hot100 -- 堆

👂纯音~ ▶ いい日だったね。 (163.com)

目录

🌼数组中第 K 个最大元素

AC  priority_queue(最小堆)

AC  快速选择

🚩前 K 个高频元素

解释

AC  priority_queue(最小堆)

🎂数据流的中位数

AC  最小堆+最大堆


🌼数组中第 K 个最大元素

215. 数组中的第K个最大元素 - 力扣(LeetCode)

AC  priority_queue(最小堆)

维护一个,包含 k 个元素的最小堆

ps:最小堆适用于动态数组

时间 O(nlogk):遍历 O(n),插入 O(logk)

空间 O(k):优先队列空间

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        priority_queue<int, vector<int>, greater<int>> q; // 最小堆
        // 堆中维护最大的 k 个数, 堆顶第 k 大
        for (auto x : nums) {
            q.push(x);
            if (q.size() > k)
                q.pop();
        }
        return q.top();
    }
};

AC  快速选择

思路类似快速排序前半部分,区别在于,快速选择完成分半后,只对一边进行递归

举个例子

找第 k 大,假设此时 i, j 相遇 且 左边 < 相遇,右边 > 相遇

此时如果 i, j 右边的数(包括 i, j 本身)刚好 k 个,那么返回 arr[i],如果右边的个数 > k,递归右边即可,< k 就递归左边(说明第 k 大在左边)

改进:

当有大量重复元素时,快速选择复杂度会到 O(n^2),所以将原 vector 分为 3 个 vector:

> 基准数,== 基准数,< 基准数 

注意:

代码第 23 行

return quick_select(small, k - (n - small.size())); // 到 small 找
// 在切割后的 small 里找第 k 大,需要更改参数 k

时间 O(n):n + n/2 + n/4 + ... + 1 ≈ 2n

class Solution {
public:
    // 递归左右边界, l, r
    int quick_select(vector<int>& nums, int k) {
        // 随机选取基准数
        int n = nums.size();
        int base = nums[rand() % n];

        vector<int> small, big, equal;
        // 3 个 vector
        for (auto x : nums) {
            if (x > base)
                big.push_back(x);
            else if (x < base)
                small.push_back(x);
            else
                equal.push_back(x);
        }
        // 递归
        if (k <= big.size())
            return quick_select(big, k); // 到 big 去找
        else if (k > n - small.size())
            return quick_select(small, k - (n - small.size())); // 到 small 找
        else
            return base;
    }
    int findKthLargest(vector<int>& nums, int k) {
        return quick_select(nums, k);
    }
};

🚩前 K 个高频元素

347. 前 K 个高频元素 - 力扣(LeetCode)

解释

priority_queue< pair<int,int>, vector< pair<int,int> >, 
                        greater< pair<int,int> >> q;
// 构造最小堆,但是,默认根据第一个元素排序的最小堆
// 不符合题目要求的,根据第二个元素"出现次数"来排序,所以还要自己写一个 cmp 比较函数

BUG:力扣代码有个问题👇 第 1 个 if 后必须有 {},否则第 2 个 if 无法被嵌套在第 1 个 if 里

if (q.size() == k) { // 1
    if (x.second > q.top().second) {
        q.pop();
        q.push(x);
    }
} // 2
// 上面的 {} 如果少了, 最后最小堆 q 为空, 编译器无法正确处理

AC  priority_queue(最小堆)

时间 O(nlogk) -- 遍历 n,插入 logk

空间 O(n) -- 哈希表大小 n

class Solution {
private:
    // 第 3 个参数:重载 () 操作符的类实例
    struct cmp {
        bool operator()(pair<int,int>& a, pair<int, int>& b) {
            return a.second > b.second; // 最小堆
        }
    };
public:
    vector<int> topKFrequent(vector<int>& nums, int k) {
        // 遍历一遍得到哈希映射
        unordered_map<int, int> m; // <整数, 出现次数>
        for (auto x : nums) 
            m[x]++;
        // 维护一个大小为 k 的最小堆, 堆顶为第 k 个高频元素
        priority_queue< pair<int,int>, vector< pair<int,int> >, cmp> q; 
        // 筛选 k 个元素
        for (auto x : m) {
            if (q.size() == k) {
                if (x.second > q.top().second) {
                    q.pop();
                    q.push(x);
                }
            }
            else
                q.push(x);
        }
        // 取出 最小堆 元素
        vector<int> ans;
        while (!q.empty()) {
            ans.push_back(q.top().first);
            q.pop();
        }
        return ans;
    }
};

🎂数据流的中位数

295. 数据流的中位数 - 力扣(LeetCode)

AC  最小堆+最大堆

1,两个容器,一个最小堆 A,一个最大堆 B,A 元素个数 m,B 元素个数 n

m == n 或 m == n + 1

2,最小堆,保存较大的一半元素;最大堆,保存较小的一半元素

最小堆 A,堆顶元素是较大部分中,最小的

最大堆 B,堆顶元素是较小部分中,最大的

3,关键在于 addNum()

1)m == n,元素插入 A(方法:先插入最大堆 B,再将 B 的堆顶转移到 A)

2)m != n(即 m == n + 1),元素插入 B(方法:先插入最小堆 A,A 堆顶元素转移到 B)

时间:插入 O(logn);查询 O(1)

空间:O(n)【最小堆,最大堆】

class MedianFinder {
private:
    priority_queue<int> big; // 默认最大堆
    priority_queue<int, vector<int>, greater<int>> small; // 最小堆
public:
    MedianFinder() {}
    
    void addNum(int num) {
        if (small.size() == big.size()) { // 插入较大部分 small
            big.push(num);
            small.push(big.top()); // 较小部分 big 的堆顶, 转移到较大部分 small
            big.pop();
        }
        else { // 插入较小部分 big
            small.push(num);
            big.push(small.top());
            small.pop();
        }
    }
    
    double findMedian() {
        if (small.size() == big.size())
            return (small.top() + big.top()) / 2.0;
        else
            return small.top();
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千帐灯无此声

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值