安装以后来看看如何使用.
可以看到然后去注册,报错了.
报错内容是这个.
无法注册页无法登录.
network anomaly
There is an abnormality in your network and you cannot connect to the server.
报错了,然后去看了一下
看到这里的,这个
CPU使用变成百分之160了,然后 内存我也给他调大了一些
调成8G了,然后硬盘大了大了一些换成50G了,然后
在这里配置的,配置了以后,然后
点击重启以后,然后再去 注册,发现还是有问题
502 Bad Gateway 报错了
这个时候,要注意
在这个面板中是可以看到 containers中就可以看到资源消耗情况
这里的一定要注意,是资源不够用了,可以点击ragflow-server左边的小绿点,查看 结果
可以看日志,就显示的是没有连接上mysql,结果我一看,mysql,根本没启动.
手动去启动,然后再去试试,注意,内存这里给8G太小了还是.
内存最好给大一点吧,然后再去试试就可以了
可以看到注册成功了.
注意去把内存改成10G把至少,我这里改成了10G,因为电脑一共就16G,再试试吧.
终于登录进来了,可以看到
注册一个账号,随便都可以
然后登录入进来 然后
然后点击头像,就可以进来
可以看到首先去配置一下模型供应商
可以看到首先我们点击设置
然后去添加我们的模型,这里
点击这里的ollama 点击添加模型
其实在ollama中还有很多其他模型
这个时候我们去看一下
ollama list
可以看到我们有一个这个
deepseek-r1:1.5b 这个模型 拿到以后
然后再去看看ip地址
然后配置好就可以了按照上面
配置好以后,然后
点击系统模型设置可以看到,选择聊天模型就可以了,
然后选择切入模型我们刚配置的
然后再去创建一个知识库
然后把知识库,可以看到
创建以后,然后提取知识库内容的这个bge-large-zh 这个也选好
然后下面选择general就可以了,然后点击确定,然后再去点击
知识库,数据集
然后去上传文件
然后就可以去添加一个本地文件了
上传本地文件就可以了,然后
可以看到上传一个文件
上传以后可以看到就有了
点击最右边,有个 启动解析 ,等待解析完成,挺慢的.
等待解析完成就可以了,然后
解析的时候CPU百分之600了.
然后针对这个文件,可以看到就有一个文档了.
这里解析也成功了.
可以看到我们再去配置一下聊天配置,助力姓名等等
然后使用的知识库等
然后reRank模型是用来重新排序的可以先不管
rerank模型通常是指在信息检索、推荐系统或者搜索引擎中,用于对初步检索结果进行重新排序的模型。其主要目的是提高搜索结果的相关性和质量,使得最符合用户需求的条目能够排在更前面的位置。
具体来说,rerank模型的工作流程通常如下:
初步检索:系统首先根据用户的查询使用一些高效但可能不够精确的算法(如基于关键词的检索、倒排索引等)快速地找出一系列候选结果。
特征抽取:对于这些候选结果,系统会进一步抽取更多的特征,这些特征可能包括但不限于文本相似度、用户行为数据、结果页面的质量、用户的个性化偏好等。
重新排序:利用机器学习模型,根据上述特征对候选结果进行重新排序。这个模型就是rerank模型,它可以是基于规则的、基于机器学习的,或者是深度学习模型。
rerank模型常见的类型包括:
基于学习的排序(Learning to Rank, LTR):使用机器学习方法来训练一个模型,用于预测文档与查询的相关性,并据此对文档进行排序。
深度学习模型:如使用神经网络,特别是Transformer架构,来更好地理解查询与文档之间的复杂关系。
rerank模型在以下场景中尤为重要:
搜索引擎:提升搜索结果的准确性和用户体验。
推荐系统:提高推荐物品的相关性,提升用户满意度和转化率。
问答系统:在找到可能的答案后,通过rerank模型选出最合适的答案。
在设计和应用rerank模型时,需要考虑到算法的效率、准确性以及用户的具体需求,以确保最终提供的结果既相关又及时。
然后再来看
提示的话,就自己写一下就可以了
然后就可以去提问了
可以看到还有引用不错哈
但是我这个机器实在是太垃圾了.
内存太小了.没办法.不搞了,到这里就算是弄好了已经
还可以调节参数,来测试 知识库
可以看到 后面dify功能更强大,
后面我们再出怎么弄
这个就是过程,然后还有一键安装包 这个
另外:对于ollama,允许用户自己去调用
https://ollama.cadn.net.cn/api.html
https://zhuanlan.zhihu.com/p/24106664972
这个是ollama的api接口可以查看使用,调用教程已经有很多了.
ragflow也可以允许使用http 的api接口来调用,实现模型对话等等功能
https://blog.csdn.net/qq_40582088/article/details/141563756
ragflow官方api文档 https://github.com/infiniflow/ragflow/blob/main/docs/references/api.md