从零开始搭建Windows AI开发环境:QWQ-32B部署+Cursor插件优化实战

文章目录

    • 前言
    • 1.安装Ollama
    • 2.QwQ-32B模型安装与运行
    • 3.Cursor安装与配置
    • 4. 简单使用测试
    • 5. 调用本地大模型
    • 6. 安装内网穿透
    • 7. 配置固定公网地址
    • 总结

前言

本方案提出了一种基于Windows系统的智能化开发平台搭建策略,通过融合Cursor智能编程平台、Ollama模型运行框架和cpolar内网穿透服务,成功实现了千问QwQ-32B大模型的私有化远程调用。该系统架构包含三个核心组件:首先利用Ollama框架实现QwQ-32B模型的本地化部署;其次构建定制化的OPENAI API接口以规范模型服务输出;最后借助内网穿透技术突破局域网限制,创建可远程访问的服务端口。

在技术实现维度,Cursor作为当前主流的AI辅助开发工具,其设计特性存在两个明显局限:其一是对公网模型服务的强依赖特性;其二是高频次API调用带来的运营成本压力。本方案从两个层面进行优化:第一,实施本地化部署方案提升数据安全性,确保所有代码解析与模型运算均在本地闭环完成;第二,采用内网穿透技术既规避了服务费用支出,又实现了跨区域访问能力。

该解决方案具备三项显著应用价值:1)为开发者提供多场景工作环境适配,通过远程连接实现本地模型访问;2)在团队协作中有效防控代码泄露风险;3)为资源受限的开发团队提供高性价比的AI服务选项。通过Ollama的轻量化部署能力、cpolar的穿透技术优势与Cursor的智能编辑功能的有机整合,最终构建出具备安全性保障、成本控制优势和操作便利性的智能开发系统。

1.安装Ollama

本例中使用的是Windows11系统专业版,通过Ollama运行Gemma3:27B大模型,之前曾经发布过如何在Windows安装Ollama的教程,有需要的同学可以看看这篇文章:Windows本地部署Deepseek-R1大模型并使用Web界面远程交互

简单来说,就是访问Ollama的官网:Download Ollama on Windows

image-20250408144901346

下载对应版本的ollama安装程序并安装:

image-20250408144936715

2.QwQ-32B模型安装与运行

在Ollama的官网点击Models,搜索qwq就可以看到模型:

image-20250307112159233

Ollama安装完成之后,就可以开始去下载 QwQ-32B 模型了,使用这个命令就能下载:

ollama run qwq

image-20250307113312147

ps:需要预留20个G以上的储存空间,默认下载到C盘,如果想修改下载位置,可以在终端中执行下方命令来指定模型文件的存放目录,这里以d:\ollama为例,大家可以自定义:

set OLLAMA_MODELS=d:\ollama

下载中,时间有点长,等待进度条完成即可,模型安装成功后会提示success,并可以进行提问了:

image-20250307141047982

3.Cursor安装与配置

访问cursor官网下载Windows版本: https://www.cursor.com/

image-20250429104747951

我这里下载的是Windows X64的0.48版本:

image-20250429111443579

下载后,按照提示一步步安装,如需创建桌面快捷方式,勾选即可:

image-20250429111822903

image-20250429111935159

点击完成后,第一次运行程序会弹出登录窗口:

image-20250429112251631

点击Sign UP注册一个账号登录:

image-20250429112735983

或者使用google或github账号登录,都可以:

image-20250429113159523

选择一个主题,点击继续:

image-20250429113504426

选择快捷键风格,点击继续:

image-20250429113709243

数据分享这里选择了私人模式进行演示,大家可以根据自己情况选择:

image-20250429113951626

给AI发送信息的语言选择简体中文:

image-20250429114222761

配置完毕后,既可看到Cursor的主界面了:

image-20250429114324732

4. 简单使用测试

现在我们就可以在右侧的输入框中选择好AI模型进行提问了,比如我这里要求他帮我写一个贪吃蛇小游戏:

image-20250429144907370

经过两次确认创建文件,并等待一小会儿后,AI就给我生成了两个文件(index.html和game.js),在将这两个文件保存在同一目录下,在浏览器中打开index.html就能看到贪吃蛇小游戏的界面了:

image-20250429145552171

image-20250429145618042

通过控制方向键也可以正常玩,不过这只是一个相当初级的版本,但是AI也提供了后续优化的建议,比如:

  • 添加游戏重启按钮

  • 调整游戏速度

  • 添加不同的难度级别

  • 添加音效

  • 添加暂停功能

image-20250429145703088

5. 调用本地大模型

在提问框旁边,我们能看到使用哪个大模型来辅助你编程的选择功能:

image-20250429150430127

不过刚才演示的是通过调用在线大模型来输出回答,现在我们来演示一下如何让Cursor调用我们刚才在本地部署的qwq-32b大模型来实现辅助开发。

要想实现这个功能,首先我们需要打开Cursor的左边栏,点击插件,搜索cline插件,并点击install进行下载:

image-20250429151632752

安装好之后,点击插件图标,选择使用我自己的api key:

image-20250429152135577

然后在API Provider中选择刚才安装的Ollama,模型地址默认http://localhost:11434,模型ID在勾选了要使用本地部署的qwq:latest后会自动填写,然后点击Let”go!

image-20250429152710678

配置完成后,点击cline插件下方的在编辑器中打开:

image-20250429154304095

在弹出的新输入框中,可以看到现在已经调用的是本地部署的qwq-32b(名称为qwq:latest)模型了!

image-20250429155717645

image-20250429155742461

提个要求测试一下:

image-20250429162220940

这次使用本地大模型生成的贪吃蛇小游戏不用自己创建文件夹了,自己在桌面上生成了一个目录:

image-20250429162927946

访问后同样可以看到游戏界面,并且这次还加上了重新开始按钮:

image-20250429162545708

但是同样也有一些BUG,需要后期进行完善与优化。

6. 安装内网穿透

但如果想要像文章开头说的那样,当和本地部署的大模型不在同一网络环境下,也能随时随地在线使用Cursor调用与本地部署的大模型辅助代码开发,那就需要借助cpolar内网穿透工具来实现公网访问了!接下来介绍一下如何安装cpolar内网穿透,过程同样非常简单,只需使用它为Ollama配置一个公网地址就可以了。

首先进入cpolar官网:

cpolar官网地址: https://www.cpolar.com

点击免费使用注册一个账号,并下载最新版本的cpolar:

image-20250307152003085

登录成功后,点击下载cpolar到本地并安装(一路默认安装即可)本教程选择下载Windows版本。

image-20240319175308664

cpolar安装成功后,在浏览器上访问http://localhost:9200,使用cpolar账号登录,登录后即可看到配置界面,结下来在WebUI管理界面配置即可。

img

接下来配置一下 ollama 的公网地址:

登录后,点击左侧仪表盘的隧道管理——创建隧道,

  • 隧道名称:cursor(可自定义命名,注意不要与已有的隧道名称重复)
  • 协议:选择 http
  • 本地地址:11434
  • 域名类型:选择随机域名
  • 地区:选择China Top

image-20250429163719795

隧道创建成功后,点击左侧的状态——在线隧道列表,查看所生成的公网访问地址,有两种访问方式,一种是http 和https:

image-20250429163801421

使用上面的任意一个公网地址替换刚才我们在Cursor中的cline插件里填写的模型地址即可,这样一来就可以随时使用Cursor在线调用本地大模型来让AI辅助我们进行代码开发了!

image-20250429164214233

小结

为了方便演示,我们在上边的操作过程中使用cpolar生成的HTTP公网地址隧道,其公网地址是随机生成的。这种随机地址的优势在于建立速度快,可以立即使用。然而,它的缺点是网址是随机生成,这个地址在24小时内会发生随机变化,更适合于临时使用。

如果有长期远程使用Cursor调用本地模型辅助开发,或者异地访问与使用其他本地部署的服务的需求,但又不想每天重新配置公网地址,还想让公网地址好看又好记并体验更多功能与更快的带宽,那我推荐大家选择使用固定的二级子域名方式来配置一个公网地址。

7. 配置固定公网地址

接下来演示如何为其配置固定的HTTP公网地址,该地址不会变化,方便分享给别人长期查看你部署的项目,而无需每天重复修改服务器地址。

配置固定http端口地址需要将cpolar升级到专业版套餐或以上。

登录cpolar官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留:

image-20250429164619594

保留成功后复制保留成功的二级子域名的名称:mycursor,大家也可以设置自己喜欢的名称。

image-20250429164648974

返回Cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道:cursor,点击右侧的编辑:

image-20250429164727702

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名:mycursor

点击更新(注意,点击一次更新即可,不需要重复提交)

image-20250429164805089

更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址名称也变成了固定的二级子域名名称的域名:

image-20250429164841474

最后,我们使用上边任意一个固定的公网地址访问,可以看到访问成功,这样一个固定且永久不变的公网地址就设置好了,可以随时随地在公网环境异地在线访问本地部署的大模型来使用Cursor辅助代码开发工作了!

image-20250429165003318

image-20250429170522159

总结

本系统方案已在Windows系统环境中成功构建Cursor智能编程平台与QwQ-32B大模型的本地化部署架构,通过cline插件构建了本地模型的调用机制。针对传统云端服务模式存在的运营成本高企与数据安全风险,本方案创造性整合内网穿透技术,成功破解了无公网IP场景下的远程访问瓶颈。实测数据显示,该技术架构在维持开发效率的同时,实现了服务成本的显著优化,主要体现在:1)本地化处理机制杜绝了数据外传隐患;2)采用内网穿透技术替代传统云服务收费模式;3)模块化插件设计提升了模型响应速度。该解决方案为需要灵活部署环境的开发团队提供了兼顾安全防护、成本控制和系统扩展的可行性方案,欢迎就技术细节进行深入交流。

在这里插入图片描述

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学编程的小程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值