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Abstract
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The Internet contains billions of images, freely available
online. Methods for ef ciently searching this incredibigh 3
resource are vital for a large number of applications. These
include object recognition [2], computer graphics [11, 27] ©
personal photo collections, online image search tools. Q

In this paper, our goal is to develop ef cient image N
search and scene matching techniques that are not onf@
fast, but also require very little memory, enabling theieus ©
on standard hardware or even on handheld devices. Ou'fr) m
approach uses recently developed machine learning teck¥
niques to convert the Gist descriptor (a real valued vector Figure 1. Shortbinary codes might be enough for recognition. This
that describes orientation energies at different scaled an 9Ure shows images reconstructed using an increasing number of
orientations within an image) to a compact binary code, bits and a compression algorithm S|m|I_ar to JPEG. The number
with a few hundredits per image. Using our scheme, it on the left represents the number of bits used to compress each

. ibl f Lti h ith millionsif image. Reconstruction is done by adding a sparsity prior on image
IS possible to perform real-time searches with millionsiro derivatives, which reduces typical JPEG artifacts. Many images

the Internet using a single large PC and obtain recognition  4re recognizable when compressed to have around 256-1024 bits.
results comparable to the full descriptor. Using our codes

on high quality labeled images from the LabelMe database age representation is often relatively simple, e.g. cdddr [
gives surprisingly powerful recognition results usinggien ~ wavelets [29] or crude segmentations [4]. The Cortina sys-
nearest neighbor techniques. tem [22] demonstrates real-time retrieval from a 10 million
Recent interest in object recognition has yielded a wide image collection, using a combination of texture and edge
range of approaches to describing the contents of an im-histogram features. See Dataal. for a survey of such
age. One important application for this technology is the methods [5].
visual search of large collections of images, such as those Our approach is based on binary codes for representing
on the Internet or on people's home computers. Accord- images and their neighborhood structure. Such codes have
ingly, a number of recognition papers have explored this received limited attention in both the vision and CBIR com-
area. Nister and Stewenius demonstrate the real-time spemunities. Ghoslet al.[7] use them to nd duplicate images
ci ¢ object recognition using a database of 40,000 images in a database. Binary codes have also been used to rep-
[19]; Obdrzalek and Matas show sub-linear indexing time resent the color of an image [13, 18]. Landreal. [14]
on the COIL dataset [20]. A common theme is the repre- use color, texture and shape cues in a 32-bit vector to per-
sentation of the image as a collection of feature vectors andform retrieval on a 10,000 image dataset. These approaches
the use of ef cient data structures to handle the large num- also use manually designed descriptors, which in view of
ber of images. the tiny capacity of each code, is likely to be highly sub-
These ideas are common to many approaches in the conoptimal particularly when the database is large, a scenario
tent based image retrieval (CBIR) community, although the not investigated by any of these papers.
emphasis on really large datasets means that the chosen im- Unlike CBIR we seek to recognize the objects present




in a novel image, not just retrieve relevant images from a it is possible to query databases with millions of images
database. We therefore want a fast way of nding images in a fraction of a second. When the retrieved images are
that are likely to contain the same objects as our novel im- annotated with high quality labels, simple nearest-neighb
age. Using the LabelMe database we show that the Gisttechniques give surprisingly powerful recognition result
descriptor, which represents orientation energy at dffier

scales and orientations, is useful for this task. Howeber, t 1. Global image representations

descriptor is too high dimensional to use for fast querying  g|gpal image representations were developed in the

of Internet-sized databases. framework of image retrieval ( nding images that as&n-

We were inspired by the results of Salakhutdinov and jlar to an input image) [5] and scene recognition (classi-
Hinton [25] who train compact binary codes to perform doc- fying an image as being a beach scene, a street, a living-
ument retrieval. We believe binary codes are promising for room, etc.) [9, 21, 15]. The main characteristic of global
three reasons. First, as shown by results on image compresimage representations is that the scene is represented as a
sion (e.g. Figure 1) it is possible to represent images with whole, rather than splitting it into its constituent obgct
a very small number of bits and still maintain the informa- Such models correspond to the state of the art in scene
tion needed for recognition. Second, scaling up to Internet recognition and context-based object recognition. Global
size databases requires doing the calculations in memory —image representations are based on computing statistics of
desktop hard-drives are simply too slow. Fitting hundrefds o |ow level features (oriented edges, vector quantized image

millions of images into a few Gigabytes of memory means patches, etc.) over xed image regions or over large image
we have a budget of very few bytes per image. Third, as segments [4].

demonstrated convincingly in [25], short binary codes al-  |n this paper we will use the scene representation pro-
low very fast querying in standard hardware, either using posed in [21] and we use the code available online. The
hash tables or ef cient bit-count operations. image is rst decomposed by a bank of multiscale oriented

Perhaps the state-of-the-art method to obtain compact bi- Iters (tuned to 8 orientations and 4 scales). Then, the
nary descriptors for querying a large database is Locality output magnitude of each lter is averaged over 16 non-
Sensitive Hashing (LSH), which nds nearest neighbors of overlapping windows arranged oma 4 grid. The result-
points lying in a high dimensional Euclidean space in con- ing image representationisda 8 16 =512dimensional
stant time. LSH does this by computing a hash function vector. For smaller images (332 pixels), we use 3 scales,
for a point by rounding a number of random projections of resultingin3 8 16 = 384 dimensions. This representa-
that point intoR™. Thus each random projection contributes tion can be thought of as using a single SIFT feature [17] to
a few bits (depending on the rounding function) to the de- describe the entire image. Other techniques involve count-
scriptor of a point. Andoni and Indyk show that with high ing the number of occurrences of vector quantized SIFT fea-
probability, points that are close iR" will have similar tures [3, 15] and textons.
hash functions, and use this fact to ef ciently nd approx- Despite the simplicity of the representation, and the fact
imate nearest neighbors. LSH has been used successfullyhat they represent the full image rather than each object
in a number of vision applications [26]. An alternative ap- separately, these methods perform surprisingly well and ca
proach is to use kd-trees [16, 17] although LSH has beenprovide an initial guess of the scene identity, the objects
reported to work better in high dimensions [1]. present in the image and their spatial con guration. In this

Despite the success of LSH, it is important to realize that paper we will use global representation as a way of building
the theoretical guarantees are asymptotic - as the numbewery compact and ef cient codes.
of random projections grows. In our experience, when the : .
number of bits is xed and relatively small, LSH can per- 2. Learning binary codes
form quite poorly. The performance increases with more  |n this section we describe two learning approaches that
bits but given our desire to scale up to millions of images, generate binary codes. In the next section we will evalu-
it would be desirable to learn a compact code, rather thanate these approaches in the framework of recognition and
waiting for it to emerge from random projections. segmentation. Our goal is to identify what is the minimal

In this paper, we leverage recent results in machine learn-number of bits that we need to encode an image so that the
ing to learn compact binary codes that allow ef cient re- nearest neighbor de ned using a Hamming distance is also
trieval. Speci cally we explore how the Gist descriptor 21  a semantically similar image.
can be reduced to a few hundred bits using a number of ap- We consider the following learning problem - given a
proaches including boosting, locality sensitive hashind a database of imageisx;g and a distance functiob (i;j )
Hinton et al.'s restricted Boltzmann machine architecture we seek a binary feature vectgr = f (x;) that preserves
[12]. We nd that the learning approaches give superior the nearest neighbor relationships using a Hamming dis-
performance compared to LSH and that using these codegance. Formally, for a poink;, denoted byN90(X;) the



indices of the 100 nearest neighborsxgfaccording to the  datasets. The parametehas an effect in the generalization
distance functiorD (i;j ). Similarly, de ne N1go(Yi) the of the nal function. For our experiments, we set= 0:1.
set of indices of the 100 descriptoys that are closest to By using a larger value of (closer to 1), the algorithm is
yi in terms of Hamming distance. Ideally, we would like only able to learn distances when very short codes are used
N100(Xj) = Nigo(y;) for all examples in our training set. (around 30 bits) and it starts over- tting after that.

The two learning approaches are Boosting (introduced Once the learning stage is nished, every image can be
to this context by Shaknarovich and Darell [26]) and Re- compressed into M bits, where each bit is computed as
stricted Boltzmann Machines (RBMs) introduced by Hinton hy(xi) = €lx; > T,. The algorithm is simple to code,

and colleagues [12]. relatively fast to train, and it provides results compeiti
with more complex approaches as we will discuss in the
2.1. BoostSSC next section. For our experiments, the vectorscontain

the Gist descriptors. For training, we use 150,000 training

Shaknarovich and Darrell [26] introduced Boosting sim- pairs B0%being negative examples),

ilarity sensitive coding (BoostSSC) to learn an embedding
of the original input space into a new space in which dis-
tances between images can be computed using a weighte
hamming distance. In this section we describe the algorithm  The second algorithm is based on the dimensionality
with some modi cations so that it can be used with a Ham- reduction framework of Salakhutdinov and Hinton [12],
ming distance. which uses multiple layers of restricted Boltzmann ma-
In their approach, each image is represented by a binarychines (RBMs). We rst give a brief overview of RBM's,
vector with M bitsy; = [hi(x;); ha(X;);:: hw (Xi)], so before describing how we apply them to our problem.
that the distance between tyo images is given by a weighted An RBM models an ensemble of binary vectors with a
Hamming distanc® (i;j ) = = M., njha(xi) ha(x;)j.  network of stochastic binary units arranged in two layers,
The weights ; and the function$, (x;) that map the input ~ one visible, one hidden. Unitg in the visible layers are
vectorx; into binary features are learned using Boosting.  connected via a set of symmetric weightts to unitsh in
For the learning stage, positive examples are pairs of im-the hidden layer. The joint con guration of visible and hid-
agesx;;X;j sothat; is one of the N nearest neighborsgf ~ den units has ag( energy: X X
j 2N (_xi). Negative examples are pairs of images that are E(v:h) = bvi b h; vihiw; (1)
not neighbors. In our implementation we use GentleBoost
with regression stumps to minimize the exponential loss. In
BoostSSC, each regression stump has the form:

5.2. Restricted Boltzmann Machines

i2 visible j 2 hidden iij
wherev; andh; are the binary states of visible and hidden
unitsi andj. w; are the weights anth andl are bias
terms, also model parameters. Using this energy function, a

fr(Xiixi)= elxi>Ty)=(e'x; >T,) +
n(Xi ;) n (& n) = (& ) " probability can be assigned to a binary vector at the visible

At each iteratiom we select the parameters fof, the re- units: X e E(vih)

gression coef cients (,, n), the stump parameters (where p(v) = e E@Q 2)

€ IS a unit vector, so thai;[ X returns thekth component of h uig

X, andT, is a threshold), to minimize the square loss: RBMs lack connections between units within a layer, hence

the conditional distributionp(hjv) andp(vjh) have a con-

venient form, being products of Bernoulli distributions:
Wiz Fo(xtx)? X

k=1 p(hy =1jv) = (B +  wjVv)
. . o . X'
Where K is the number of training pairg, is the neigh- v =1ih) = + Wi he 3
borhood label & = 1 if the two images are neigh- p(vi = 1jh) ( S i) ®
bors andz, = 1 otherwise), andwX is the weight
for eachPtraining pair at iteratiom given by wX = where (x) = 1=(1 + e X), the logistic function. Using
exp( z« {‘zllft(xik;x}‘)). Eqn. 3, parametersy; ;b; iy can be updated via a con-

As we want the nal metric to be a Hamming distance, trastive divergence sampling scheme (see [12] for details)
we restrict the class of weak learners so that all the weightsThis ensures that the training samples have a lower energy
are the same for all the featureg =  (the values of | than nearby hallucinations, samples generated synthgtica
do not need to be constrained as they only contribute to nal to act as negative examples.
distance as a constant offset, independent of the inpJt pair ~ Recently, Hinton and colleagues have demonstrated
This small modi cation is important as it allows for very methods for stacking RBMs into multiple layers, creating
ef cient techniques for computing distances on very large “deep” networks which can capture high order correlations



Input image Groundtruth neighbors L2+Pixels Gist 32:RBM 16°RBM 8*RBM

Figure 2. Each row shows the input image and the 12 nearest neigh&iogs a) ground truth distance using the histograms of objects
present on each image (see text), b) L2 distance using RGB value® di3tance using Gist descriptors, d) Gist features compressed to 8
bits using an RBM and Hamming distance, e) 16 bits RBM and f) 32 bits RBM.

between the visible units at the bottom layer of the network. form gradient descent on them using back-propagation. Our
By choosing an architecture that progressively reduces thechosen objective function is Neighborhood Components
number of units in each layer, a high dimensional binary in- Analysis (NCA) [8, 24]. This attempts to preserve the se-
put vector can be mapped to a far smaller binary vector atmantic neighborhood structure by maximizing the number
the output. Thus each bit at the output maps through multi- of neighbors around each query that have the same class la-
ple layers of non-linearities to model the complicated sub- bels. GiverK labeled training cases; c¢), we de ne the
space of the input data. Since the Gist descriptor values aregrobability that pointk is assigned the class of poihtas
not binary but real numbers, the rst layer of visible units py . The objectivéOyca attempts to maximize the expected
are modi ed to have a Gaussian distribution number of correctly classi ed points on the training data:

The deep network is trained into two stages: rst, an X X i oWy w2
unsupervisedbre-training phase which sets the network o _ D P = P el ) TN
weights to approximately the right neighborhood; second, a Kol ke ' ey €I XMWY (xw)jz
ne-tuning phase where the network has its weights moved '
to the local optimum by back-propagation on labeled data. wheref (xjW) is the projection of the data point by the

In pre-training, the network is trained from the visible multi-layered network with paramete®. This function
input layer up to the output layer in a greedy fashion. Once can be minimized by taking derivatives Gfyca with re-
the parameters of the rst layer have converged using con- spect tolV and using conjugate gradient descent.
trastive divergence, the activation probabilities (givien Our chosen RBM architecture for experiments used four
Eqn. 3) of the hidden layer are xed and used as data for thelayers of hidden units, having sizes 512-512-266N be-
layer above — the hidden units becoming the visible ones foring the desired size of the nal code. However, for 8 and
the next layer up, and so on up to the top of the network. ~ 16-bit codes, we seéfl =32 and added a fth layer of 8 or

In ne-tuning, we make all the units deterministic, re- 16 units respectively. The input to the model was a 384

taining the weights and biases from pre-training and per- OF 512-dimensional Gist vector for the 12.9 million image
dataset and the LabelMe dataset respectively. The model

lin Eqn. 3,p(vi = xjh) is modied to be a Gaussian with a mean has a large number of parameters, for example in the case
determined by the hidden units, see [24]. N =32, there are 663,552 (53£512+256512+25632)




Retriewl test

3.1. LabelMe retrieval

In order to train the similarity measures we need to de-
ne what ground truth semantic similarity is. Our de nition
of semantic distance between two images is based on the
ll / histogram of object labels in the two images. For this we
2l use the spatial pyramid matching [10, 15] over object la-
e e bels. The spatial pyramid matching uses the histogram of
B ;%05“"9 object labels over image regions of different sizes, and the
. 163841gist distance between images is computed using histogram in-
Ble3z o4 1% % tersection. This results in a simple similarity measuré tha

D takes into account the objects present in the image as well
Figure 3. For a xed number of true neighborll (= 50), we as their spatial organization: two images that have the same
plot the percentage of true nearest neighbors that are retrieved agbject labels in similar spatial locations are rated asatlos
a function of the _total number pf images r_etrie\Md True neigh- than two images with the same objects but in different spa-
bors are de ned in terms of object label histograms. tial locations, and this is rated closer than two images with
different object classes.

As the LabelMe dataset contains many different labels
describing the same objects, we collapsed the annotations
using synonyms sets [23]. For instance, we group under
the label “person”, all the objects labeled as “pedesttian”
“human”, “woman”, “man”, etc.

Fig. 2 shows representative retrieval results and Fig. 3
provides a quantitative analysis of the retrieval perfanoea
dn 2000 test images. Fig. 3(a) displays the percentage

of the rst true 50 nearest neighbors that are included in
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weights alone. Correspondingly, pre-training used Gist ve
tors from 70,000 images, 20,000 from the LabelMe training
set, 50,000 from PeekaBoom imades

For back-propagation, in the case of LabelMe, we used
20 batches of 10001000 neighborhood regions, taking se-
mantic labels from the LabelMe training data. Within each
neighborhood region, the mean number of neighbors with
the same class label was 100. For the Web images datase
we computed the neighborhood labels to mimic the struc-
ture of Gist vectors, taking the 50 neighbors to have the . . .
same class label, with 108 batches ofg500x500 neighbor—the retne_v ed set as a function of the number Of. the im-
hood being used. For each batch, three iterations of con-29¢s retrievedN(l ). Fig. 3(b) shows a section of Fig. 3(a)

jugate gradient descent were performed, and a total of 20for M = .500' The gures compare .LSH’ B.OOStSSC and
epochs of training were used. The activation probabilities RfBMS' Fig. 3(? shows the effecr: of mpLeasmg the ngmt;er
of the top hidden layer were binarized using a threshold set? bits. Top performance is reached \.N.'t around .30 bits for
at the median value of each bit over the training data. RBMS’. with the othe_r methods requiring more bits. HOW'
In testing, the Gist descriptors are computed for each ever, given enough bits, all the approaches converge to sim-
qguery image and normalized in the same manner as theIIar retrieval performance.

training data. In contrast to the training, evaluation of an 3.2. Web image dataset retrieval

RBM network is very fast (see Section 3.3 for timings),  As we increase the size of the dataset, we expect that
the activation probabilities being propagated up the ntwo  |onger codes will be required in order to nd the nearest
and binarized at the top layer, giving Ahtbit binary code. neighbors to one image. Here, we learn compact binary

3. Experiments codes on a dataset of 12.9 million images from the web [28].
bits d d . 5 Inth As we lack ground truth for semantic similarity in this
How many bits do we need to represent images? Int €Sataset, in these experiments we have trained the RBM to

experiments, our goal is to evaluate short binary codes thatreproduce the same neighborhood as the original Gist de-

preserve “semantic distance between scenes. Given an m;scriptors_ Fig. 4 shows the overlap between the neighbors

put image and a large database of annotated images, OUfptained with Gist and the neighbors obtained by comput-

g_oa_l is to nd in this dataset images that are semantically ing Hamming distance using different bit length codes with
similar. We use two datasets, one of 22,000 from LabelMe RBMs and LSH. Fig. 5 shows examples of input images

[23] and another of 12.9 million web images from [28]. and the 12 nearest neighbors using different code lengths.

2Further pre-training details: The Gist vectors were norgalito be There is a signi cant Improvement in the semantic similar-
zero mean, unit mean variance and split into 700 batches ofl6i@eThe ity of the neighbor images as we move from 30 bits to 256
rst layer of the RBM, having Gaussian visible units, wasitied more bits per image.
gently than the others using 200 epochs of stochastic gredéscent with . .
a learning rate of 0.001, weight decay of 0.00002 and momenfudrfo 3.3. Retrieval speed evaluation

All other layers were trained with a learning rate of 0.1,ngsb0 epochs, . . .
other parameters being identical. The code was adapted fratmtcom- We used two different algorithms for fast retrieval us-

panying [12]. ing the compact binary representation. The rst is based




Input image 30-RBM 64-RBM 128-RBM 256°RBM Gist

Figure 5. 12 nearest neighbors from a database of 12,900,00@&nAg the number of bits increases the retrieved images are of similar
visual quality as the Gist descriptor.

ﬂ;g RBM | _lfg ‘ ' ‘ LsH We compared our approach to kd-trees, a standard
508 256bits 1 sog method for quick matching. Table 1 shows the time per
2 07| X g €07 . . . .
£od S image to nd the closest 5 neighbors to a query point in
£ 09 : { Zos , S » both the LabelMe and Web images dataset using a variety of
g 04 30bits 804 256bits ; ;

F0s 1 %os Dehite methods and input representatidnsi\Ve also compared to

: 3fﬂ Fhe approximate-NN scheme u'sed by Lowe [17] for mgtch-
o 2308 —sh00 oo © m 30nits | ing SIFT vectors. We found this to be faster than ordinary

N of e mages o of 12900000 Namber o etevemags (ot of 12600000 kd-trees but still much slower than our learnt RBM codes
Figure 4. Comparison of retrieval results on the Web dataset (12.9and gave worse retrieval performance. Speci cally, for the
Million images) using different RBM encodings. The retrieval per- |abelMe dataset, retrieving 1000 neighbors using Lowe's
formance increases with the number of bits, but even for 256 bits kd-tree took 3ms/image and retrieved 17% of true neigh-

we need to look at 4,000 images to nd 25 of the 50 nearest neigh- bors, while RBMs took 6s/image and retrieved 48% of true

bors obtained u_sing Gis_t. NevetheIess, the performanc_e is far bet'neighbors. Note that kd-trees cannot be applied to the Web
ter than LSH (right) which requires more than 50,000 images to

. . dataset due to prohibitive memory requirements and even

retrieve 25 of the 50 nearest neighbors. .
when they can be applied (for the LabelMe dataset), they

on hashing. The compact binary descriptor for each imageare much slower than exhaustive search on the compact bit
becomes its hash key. Given a query descriptor, we enu-representation. Even for 12 million images, we can nd ex-
merate all hash keys having up@obits different from the  act nearest neighbors in Hamming space in a fraction of a
guery. Any hash entries found are returned as neighbors,second on a fast PC.
under our Hamming distance metric. Multiple images hav- 3 4. Short Binary Codes for Recognition
ing the same hash key are stored in a linked list. The draw-  £rom our previous de nition of semantic similarity, two
back to this scheme is the large memory requirements sincgmages are semantically similar if their segmentations and
anN -bit code requires a hash table of s¢. Given the _ object labels are exchangeable. If the retrieval is sufgkss
memory capacity of current PC's, this translates to a practi the output will be an object label for every pixel in the input
cal maximum of around =30°. image. For this to work, we need a large database of anno-

For codes longer than 30 bits, we use exhaustive searchated images so that the database covers most object con g-
— for each query we calculate the Hamming distance to all yrations. Inthe rst set of these experiments we used a large
images in the database. This would seem prohibitively slow co|lection oflabeledimages from the LabelMe dataset. In
for millions of images, but the Hamming distance can be that database, the set of street scenes is representett parti
calculated very quickly — it requires an xor followed by a ylarly well. For each such image users have labeled pixels
bit-count operation. as belonging to different objects like cars, roads, treg, sk
pedestrians, etc.

3By using a 2nd (conventional) hash function in conjunctidthwhe
RBM hash function, it is possible to handle code30 bits but the volume 4For the kd-tree, we used a variant known as a spill-tree,gusade
of the Hamming ball quickly becomes prohibitive. from [16].
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Table 1. Timings for different methods of nding the 5 nearest Figure 7. Pixel labeling experiment. a) Perfqrmance as afur_1ction
neighbors to query vectors from the LabelMe dataset (2nd column) of con dence (the agreement in votes provided by the retrieved
and the web images dataset (3rd column). Rows 2 and 3 detail thdM29€s)- Each bin contain #0of the images from the test set.
size of the dataset and the dimensionality of Gist vectors. Using NOt€ thatfor 266 of the images, arourit0%of the pixels are cor-

the standard Gist descriptor to represent each image results in slow€Ctly labeled. b) Average percentage of pixels correctly labeled as
matching since it must be performed in a high dimensional space. & function of the number of bits used for each code.

Ef cient methods such as spill-trees offer no advantage over brute
force in such settings. Note that for the web images dataset, the
raw Gist vectors cannot tinto memory so timings cannot be com-
puted. By contrast, our binary codes can be matched quickly by
brute force search. Using multi-threading (M/T) on a quad-core
processor offers signi cant performance gains. We also list the

Person

0|

Precision

——30-bit RBM

relative to full gist

Performance (Av. Precision)

timing of our 30-bit hashing scheme, whose run time is indepen- . T oubitReu _
dent of the database size, being approximateftites faster that 2 __zeumau o pocaten. Place
matching in the original Gist descriptor space. N ‘ ' —oovee

05 _os o5 o7 T ) B
Recall number bits

Figure 8. Recognition on Web images dataset. Left: recall-

Figure 6 shows some labeling results. For each test im-precision curves for the person category. Right: performance of
age we select the 50 nearest neighbors, then for each pixebinary codes (using average precision), relative to full Gist de-
we assign the object label that has more votes at that pixelscriptor.
location. The nal performance corresponds to the percent-
age of pixels correctly labeled. Fig. 7 summarizes the re- . .
sults on 2000 test images. It is important to note that the4' Discussion
performances are bounded by the dataset. If one image does . .
not have another similar image in the dataset, then we can ©One of the lessons of modern search engines is that even
not provide a segmentation. The black line in Fig. 7(a),(b) V€'Y Simple algorithms can give remarkable performances
represents the maximal performance of the labeling taskPY utilizing data on an Internet scale. It is therefore very

achieved when we use the true neighbors. On averageé, 68 ©€mpting to apply such an approach to object recognition.
of the pixels are correctly labeled. But any research in this direction immediately runs into

daunting problems of computation — imagine trying to
We also performed a larger scale experiment on the Webdownload 80 million images, to say nothing of doing ex-
images dataset. 2000 test examples were selected at randoperiments with such a huge database. Ef cient schemes of
and manually labeled as being one of six classes (person, lorepresentation and matching are needed.
cation, plant, animal, device, junk). For each testimage, w
found the closest 500 images in the 12.9 million and used

the text label from the neighbors to vote on the class la- . o . .
ing, it is possible to learn compact binary codes for large

bel, using Wordnet voting in the manner of [28]. This gave databases (as few as 256 bits per image). With these codes,
a con dence score as to the presence/absence of each ob-

ject class in the image. Fig. 8(a) shows the recall-precisio ﬁﬂga;%baesse Oc;friﬁom"g?‘g ggggtegntzk;serl:]% Iez?iétagu??o
curve for the person class, while Fig. 8(b) shows the rela- gabyt Yy ry '

. - . thermore, we have shown that fast querying is possible
tive performance codes for all 5 classes to the original Gist .

. . . g on this database on a standard PC. We plan to make the
descriptor. This gure shows that in a recognition task, for

such a large dataset, we need more than 30 bits. Aroun(é_i‘atabase and the querying tools publically available and

In this paper we have presented such schemes. We have
shown that using recent developments in machine learn-

256 bits, performances are comparable to those achieve hoepfnizlri\evtl-llszg:s Eﬁzneonbjid recognition research toward
with the uncompressed Gist descriptor. ge.
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Figure 6. This gure shows six example input images. For each imageshww the rst 12 nearest neighbors when using ground truth
semantic distance (see text), using 32bits RBM and the original Gist descfighich uses 16384 bits). Below each set of neighbors
we show the LabelMe segmentations of each image. Those segmentaitibtiea corresponding labels are used by a pixel-wise voting
scheme to propose a segmentation and labeling of the input image. THingesegmentation is shown below each input image. The
number above the segmentation indicates the percentage of pixelstigdakeled. A more quantitative analysis is shown in Fig. 7.
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