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Abstract

The Internet contains billions of images, freely available
online. Methods for ef�ciently searching this incredibly rich
resource are vital for a large number of applications. These
include object recognition [2], computer graphics [11, 27],
personal photo collections, online image search tools.

In this paper, our goal is to develop ef�cient image
search and scene matching techniques that are not only
fast, but also require very little memory, enabling their use
on standard hardware or even on handheld devices. Our
approach uses recently developed machine learning tech-
niques to convert the Gist descriptor (a real valued vector
that describes orientation energies at different scales and
orientations within an image) to a compact binary code,
with a few hundredbits per image. Using our scheme, it
is possible to perform real-time searches with millions from
the Internet using a single large PC and obtain recognition
results comparable to the full descriptor. Using our codes
on high quality labeled images from the LabelMe database
gives surprisingly powerful recognition results using simple
nearest neighbor techniques.

Recent interest in object recognition has yielded a wide
range of approaches to describing the contents of an im-
age. One important application for this technology is the
visual search of large collections of images, such as those
on the Internet or on people's home computers. Accord-
ingly, a number of recognition papers have explored this
area. Nister and Stewenius demonstrate the real-time spe-
ci�c object recognition using a database of 40,000 images
[19]; Obdrzalek and Matas show sub-linear indexing time
on the COIL dataset [20]. A common theme is the repre-
sentation of the image as a collection of feature vectors and
the use of ef�cient data structures to handle the large num-
ber of images.

These ideas are common to many approaches in the con-
tent based image retrieval (CBIR) community, although the
emphasis on really large datasets means that the chosen im-
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Figure 1. Short binary codes might be enough for recognition. This
�gure shows images reconstructed using an increasing number of
bits and a compression algorithm similar to JPEG. The number
on the left represents the number of bits used to compress each
image. Reconstruction is done by adding a sparsity prior on image
derivatives, which reduces typical JPEG artifacts. Many images
are recognizable when compressed to have around 256-1024 bits.

age representation is often relatively simple, e.g. color [6],
wavelets [29] or crude segmentations [4]. The Cortina sys-
tem [22] demonstrates real-time retrieval from a 10 million
image collection, using a combination of texture and edge
histogram features. See Dattaet al. for a survey of such
methods [5].

Our approach is based on binary codes for representing
images and their neighborhood structure. Such codes have
received limited attention in both the vision and CBIR com-
munities. Ghoshet al.[7] use them to �nd duplicate images
in a database. Binary codes have also been used to rep-
resent the color of an image [13, 18]. Landreet al. [14]
use color, texture and shape cues in a 32-bit vector to per-
form retrieval on a 10,000 image dataset. These approaches
also use manually designed descriptors, which in view of
the tiny capacity of each code, is likely to be highly sub-
optimal particularly when the database is large, a scenario
not investigated by any of these papers.

Unlike CBIR we seek to recognize the objects present
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in a novel image, not just retrieve relevant images from a
database. We therefore want a fast way of �nding images
that are likely to contain the same objects as our novel im-
age. Using the LabelMe database we show that the Gist
descriptor, which represents orientation energy at different
scales and orientations, is useful for this task. However, the
descriptor is too high dimensional to use for fast querying
of Internet-sized databases.

We were inspired by the results of Salakhutdinov and
Hinton [25] who train compact binary codes to perform doc-
ument retrieval. We believe binary codes are promising for
three reasons. First, as shown by results on image compres-
sion (e.g. Figure 1) it is possible to represent images with
a very small number of bits and still maintain the informa-
tion needed for recognition. Second, scaling up to Internet-
size databases requires doing the calculations in memory —
desktop hard-drives are simply too slow. Fitting hundreds of
millions of images into a few Gigabytes of memory means
we have a budget of very few bytes per image. Third, as
demonstrated convincingly in [25], short binary codes al-
low very fast querying in standard hardware, either using
hash tables or ef�cient bit-count operations.

Perhaps the state-of-the-art method to obtain compact bi-
nary descriptors for querying a large database is Locality
Sensitive Hashing (LSH), which �nds nearest neighbors of
points lying in a high dimensional Euclidean space in con-
stant time. LSH does this by computing a hash function
for a point by rounding a number of random projections of
that point intoR1. Thus each random projection contributes
a few bits (depending on the rounding function) to the de-
scriptor of a point. Andoni and Indyk show that with high
probability, points that are close inRn will have similar
hash functions, and use this fact to ef�ciently �nd approx-
imate nearest neighbors. LSH has been used successfully
in a number of vision applications [26]. An alternative ap-
proach is to use kd-trees [16, 17] although LSH has been
reported to work better in high dimensions [1].

Despite the success of LSH, it is important to realize that
the theoretical guarantees are asymptotic - as the number
of random projections grows. In our experience, when the
number of bits is �xed and relatively small, LSH can per-
form quite poorly. The performance increases with more
bits but given our desire to scale up to millions of images,
it would be desirable to learn a compact code, rather than
waiting for it to emerge from random projections.

In this paper, we leverage recent results in machine learn-
ing to learn compact binary codes that allow ef�cient re-
trieval. Speci�cally we explore how the Gist descriptor [21]
can be reduced to a few hundred bits using a number of ap-
proaches including boosting, locality sensitive hashing and
Hinton et al.'s restricted Boltzmann machine architecture
[12]. We �nd that the learning approaches give superior
performance compared to LSH and that using these codes

it is possible to query databases with millions of images
in a fraction of a second. When the retrieved images are
annotated with high quality labels, simple nearest-neighbor
techniques give surprisingly powerful recognition results.

1. Global image representations
Global image representations were developed in the

framework of image retrieval (�nding images that aresim-
ilar to an input image) [5] and scene recognition (classi-
fying an image as being a beach scene, a street, a living-
room, etc.) [9, 21, 15]. The main characteristic of global
image representations is that the scene is represented as a
whole, rather than splitting it into its constituent objects.
Such models correspond to the state of the art in scene
recognition and context-based object recognition. Global
image representations are based on computing statistics of
low level features (oriented edges, vector quantized image
patches, etc.) over �xed image regions or over large image
segments [4].

In this paper we will use the scene representation pro-
posed in [21] and we use the code available online. The
image is �rst decomposed by a bank of multiscale oriented
�lters (tuned to 8 orientations and 4 scales). Then, the
output magnitude of each �lter is averaged over 16 non-
overlapping windows arranged on a4 � 4 grid. The result-
ing image representation is a4� 8� 16 = 512 dimensional
vector. For smaller images (32� 32 pixels), we use 3 scales,
resulting in3 � 8 � 16 = 384 dimensions. This representa-
tion can be thought of as using a single SIFT feature [17] to
describe the entire image. Other techniques involve count-
ing the number of occurrences of vector quantized SIFT fea-
tures [3, 15] and textons.

Despite the simplicity of the representation, and the fact
that they represent the full image rather than each object
separately, these methods perform surprisingly well and can
provide an initial guess of the scene identity, the objects
present in the image and their spatial con�guration. In this
paper we will use global representation as a way of building
very compact and ef�cient codes.

2. Learning binary codes

In this section we describe two learning approaches that
generate binary codes. In the next section we will evalu-
ate these approaches in the framework of recognition and
segmentation. Our goal is to identify what is the minimal
number of bits that we need to encode an image so that the
nearest neighbor de�ned using a Hamming distance is also
a semantically similar image.

We consider the following learning problem - given a
database of imagesf x i g and a distance functionD(i; j )
we seek a binary feature vectoryi = f (x i ) that preserves
the nearest neighbor relationships using a Hamming dis-
tance. Formally, for a pointx i , denoted byN100(x i ) the



indices of the 100 nearest neighbors ofx i according to the
distance functionD(i; j ). Similarly, de�ne N100(yi ) the
set of indices of the 100 descriptorsyj that are closest to
yi in terms of Hamming distance. Ideally, we would like
N100(x i ) = N100(yi ) for all examples in our training set.

The two learning approaches are Boosting (introduced
to this context by Shaknarovich and Darell [26]) and Re-
stricted Boltzmann Machines (RBMs) introduced by Hinton
and colleagues [12].

2.1. BoostSSC

Shaknarovich and Darrell [26] introduced Boosting sim-
ilarity sensitive coding (BoostSSC) to learn an embedding
of the original input space into a new space in which dis-
tances between images can be computed using a weighted
hamming distance. In this section we describe the algorithm
with some modi�cations so that it can be used with a Ham-
ming distance.

In their approach, each image is represented by a binary
vector with M bitsyi = [ h1(x i ); h2(x i ); :::; hM (x i )], so
that the distance between two images is given by a weighted
Hamming distanceD(i; j ) =

P M
n =1 � n jhn (x i ) � hn (x j )j.

The weights� i and the functionshn (x i ) that map the input
vectorx i into binary features are learned using Boosting.

For the learning stage, positive examples are pairs of im-
agesx i ; x j so thatx j is one of the N nearest neighbors ofx i

j 2 N (x i ). Negative examples are pairs of images that are
not neighbors. In our implementation we use GentleBoost
with regression stumps to minimize the exponential loss. In
BoostSSC, each regression stump has the form:

f n (x i ; x j ) = � n
�
(eT

n x i > T n ) = ( eT
n x j > T n )

�
+ � n

At each iterationn we select the parameters off n , the re-
gression coef�cients (� n , � n ), the stump parameters (where
ek is a unit vector, so thateT

k x returns thekth component of
x, andTn is a threshold), to minimize the square loss:

KX

k=1

wk
n (zk � f n (xk

i ; xk
j ))2

Where K is the number of training pairs,zk is the neigh-
borhood label (zk = 1 if the two images are neigh-
bors andzk = � 1 otherwise), andwk

n is the weight
for each training pair at iterationn given by wk

n =
exp(� zk

P n � 1
t =1 f t (xk

i ; xk
j )) .

As we want the �nal metric to be a Hamming distance,
we restrict the class of weak learners so that all the weights
are the same for all the features� n = � (the values of� n

do not need to be constrained as they only contribute to �nal
distance as a constant offset, independent of the input pair).
This small modi�cation is important as it allows for very
ef�cient techniques for computing distances on very large

datasets. The parameter� has an effect in the generalization
of the �nal function. For our experiments, we set� = 0 :1.
By using a larger value of� (closer to 1), the algorithm is
only able to learn distances when very short codes are used
(around 30 bits) and it starts over-�tting after that.

Once the learning stage is �nished, every image can be
compressed into M bits, where each bit is computed as
hn (x i ) = eT

n x i > T n . The algorithm is simple to code,
relatively fast to train, and it provides results competitive
with more complex approaches as we will discuss in the
next section. For our experiments, the vectorsx i contain
the Gist descriptors. For training, we use 150,000 training
pairs (80%being negative examples).

2.2. Restricted Boltzmann Machines

The second algorithm is based on the dimensionality
reduction framework of Salakhutdinov and Hinton [12],
which uses multiple layers of restricted Boltzmann ma-
chines (RBMs). We �rst give a brief overview of RBM's,
before describing how we apply them to our problem.

An RBM models an ensemble of binary vectors with a
network of stochastic binary units arranged in two layers,
one visible, one hidden. Unitsv in the visible layers are
connected via a set of symmetric weightsW to unitsh in
the hidden layer. The joint con�guration of visible and hid-
den units has an energy:

E(v ; h) = �
X

i 2 visible

bi vi �
X

j 2 hidden

bj hj �
X

i;j

vi hi wij (1)

wherevi andhj are the binary states of visible and hidden
units i and j . wij are the weights andbi andbj are bias
terms, also model parameters. Using this energy function, a
probability can be assigned to a binary vector at the visible
units:

p(v ) =
X

h

e� E (v ;h )
P

u ;g e� E (u ;g)
(2)

RBMs lack connections between units within a layer, hence
the conditional distributionsp(hjv ) andp(v jh) have a con-
venient form, being products of Bernoulli distributions:

p(hj = 1 jv ) = � (bj +
X

i

wij vi )

p(vi = 1 jh) = � (bi +
X

j

wij hj ) (3)

where� (x) = 1 =(1 + e� x ), the logistic function. Using
Eqn. 3, parameterswij ; bi ; bj can be updated via a con-
trastive divergence sampling scheme (see [12] for details).
This ensures that the training samples have a lower energy
than nearby hallucinations, samples generated synthetically
to act as negative examples.

Recently, Hinton and colleagues have demonstrated
methods for stacking RBMs into multiple layers, creating
“deep” networks which can capture high order correlations



Ground truth neighbors L2•Pixels Gist 8•RBM16•RBM32•RBMInput image

Figure 2. Each row shows the input image and the 12 nearest neighborsusing, a) ground truth distance using the histograms of objects
present on each image (see text), b) L2 distance using RGB values, c) L2 distance using Gist descriptors, d) Gist features compressed to 8
bits using an RBM and Hamming distance, e) 16 bits RBM and f) 32 bits RBM.

between the visible units at the bottom layer of the network.
By choosing an architecture that progressively reduces the
number of units in each layer, a high dimensional binary in-
put vector can be mapped to a far smaller binary vector at
the output. Thus each bit at the output maps through multi-
ple layers of non-linearities to model the complicated sub-
space of the input data. Since the Gist descriptor values are
not binary but real numbers, the �rst layer of visible units
are modi�ed to have a Gaussian distribution1.

The deep network is trained into two stages: �rst, an
unsupervisedpre-training phase which sets the network
weights to approximately the right neighborhood; second, a
�ne-tuning phase where the network has its weights moved
to the local optimum by back-propagation on labeled data.

In pre-training, the network is trained from the visible
input layer up to the output layer in a greedy fashion. Once
the parameters of the �rst layer have converged using con-
trastive divergence, the activation probabilities (givenin
Eqn. 3) of the hidden layer are �xed and used as data for the
layer above – the hidden units becoming the visible ones for
the next layer up, and so on up to the top of the network.

In �ne-tuning, we make all the units deterministic, re-
taining the weights and biases from pre-training and per-

1In Eqn. 3,p(vi = xjh ) is modi�ed to be a Gaussian with a mean
determined by the hidden units, see [24].

form gradient descent on them using back-propagation. Our
chosen objective function is Neighborhood Components
Analysis (NCA) [8, 24]. This attempts to preserve the se-
mantic neighborhood structure by maximizing the number
of neighbors around each query that have the same class la-
bels. GivenK labeled training cases (x k ; ck ), we de�ne the
probability that pointk is assigned the class of pointl as
pkl . The objectiveONCA attempts to maximize the expected
number of correctly classi�ed points on the training data:

ONCA =
KX

k=1

X

l :ck = cl

pkl ; pkl =
e�jj f (x k jW ) � f (x l jW ) jj 2

P
m 6= l e�jj f (x m jW ) � f (x l jW ) jj 2

wheref (x jW ) is the projection of the data pointx by the
multi-layered network with parametersW . This function
can be minimized by taking derivatives ofONCA with re-
spect toW and using conjugate gradient descent.

Our chosen RBM architecture for experiments used four
layers of hidden units, having sizes 512-512-256-N , N be-
ing the desired size of the �nal code. However, for 8 and
16-bit codes, we setN =32 and added a �fth layer of 8 or
16 units respectively. The input to the model was a 384
or 512-dimensional Gist vector for the 12.9 million image
dataset and the LabelMe dataset respectively. The model
has a large number of parameters, for example in the case
N =32, there are 663,552 (5122+5122+256�512+256�32)
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Figure 3. For a �xed number of true neighbors (N = 50), we
plot the percentage of true nearest neighbors that are retrieved as
a function of the total number of images retrievedM . True neigh-
bors are de�ned in terms of object label histograms.

weights alone. Correspondingly, pre-training used Gist vec-
tors from 70,000 images, 20,000 from the LabelMe training
set, 50,000 from PeekaBoom images2.

For back-propagation, in the case of LabelMe, we used
20 batches of 1000� 1000 neighborhood regions, taking se-
mantic labels from the LabelMe training data. Within each
neighborhood region, the mean number of neighbors with
the same class label was 100. For the Web images dataset,
we computed the neighborhood labels to mimic the struc-
ture of Gist vectors, taking the 50 neighbors to have the
same class label, with 100 batches of 500x500 neighbor-
hood being used. For each batch, three iterations of con-
jugate gradient descent were performed, and a total of 20
epochs of training were used. The activation probabilities
of the top hidden layer were binarized using a threshold set
at the median value of each bit over the training data.

In testing, the Gist descriptors are computed for each
query image and normalized in the same manner as the
training data. In contrast to the training, evaluation of an
RBM network is very fast (see Section 3.3 for timings),
the activation probabilities being propagated up the network
and binarized at the top layer, giving anN -bit binary code.

3. Experiments

How many bits do we need to represent images? In these
experiments, our goal is to evaluate short binary codes that
preserve “semantic” distance between scenes. Given an in-
put image and a large database of annotated images, our
goal is to �nd in this dataset images that are semantically
similar. We use two datasets, one of 22,000 from LabelMe
[23] and another of 12.9 million web images from [28].

2Further pre-training details: The Gist vectors were normalized to be
zero mean, unit mean variance and split into 700 batches of size100. The
�rst layer of the RBM, having Gaussian visible units, was trained more
gently than the others using 200 epochs of stochastic gradient descent with
a learning rate of 0.001, weight decay of 0.00002 and momentum of 0.9.
All other layers were trained with a learning rate of 0.1, using 50 epochs,
other parameters being identical. The code was adapted from that accom-
panying [12].

3.1. LabelMe retrieval
In order to train the similarity measures we need to de-

�ne what ground truth semantic similarity is. Our de�nition
of semantic distance between two images is based on the
histogram of object labels in the two images. For this we
use the spatial pyramid matching [10, 15] over object la-
bels. The spatial pyramid matching uses the histogram of
object labels over image regions of different sizes, and the
distance between images is computed using histogram in-
tersection. This results in a simple similarity measure that
takes into account the objects present in the image as well
as their spatial organization: two images that have the same
object labels in similar spatial locations are rated as closer
than two images with the same objects but in different spa-
tial locations, and this is rated closer than two images with
different object classes.

As the LabelMe dataset contains many different labels
describing the same objects, we collapsed the annotations
using synonyms sets [23]. For instance, we group under
the label “person”, all the objects labeled as “pedestrian”,
“human”, “woman”, “man”, etc.

Fig. 2 shows representative retrieval results and Fig. 3
provides a quantitative analysis of the retrieval performance
on 2000 test images. Fig. 3(a) displays the percentage
of the �rst true 50 nearest neighbors that are included in
the retrieved set as a function of the number of the im-
ages retrieved (M ). Fig. 3(b) shows a section of Fig. 3(a)
for M = 500. The �gures compare LSH, BoostSSC and
RBMs. Fig. 3(b) shows the effect of increasing the number
of bits. Top performance is reached with around 30 bits for
RBMs, with the other methods requiring more bits. How-
ever, given enough bits, all the approaches converge to sim-
ilar retrieval performance.

3.2. Web image dataset retrieval

As we increase the size of the dataset, we expect that
longer codes will be required in order to �nd the nearest
neighbors to one image. Here, we learn compact binary
codes on a dataset of 12.9 million images from the web [28].

As we lack ground truth for semantic similarity in this
dataset, in these experiments we have trained the RBM to
reproduce the same neighborhood as the original Gist de-
scriptors. Fig. 4 shows the overlap between the neighbors
obtained with Gist and the neighbors obtained by comput-
ing Hamming distance using different bit length codes with
RBMs and LSH. Fig. 5 shows examples of input images
and the 12 nearest neighbors using different code lengths.
There is a signi�cant improvement in the semantic similar-
ity of the neighbor images as we move from 30 bits to 256
bits per image.

3.3. Retrieval speed evaluation

We used two different algorithms for fast retrieval us-
ing the compact binary representation. The �rst is based
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Figure 5. 12 nearest neighbors from a database of 12,900,000 images. As the number of bits increases the retrieved images are of similar
visual quality as the Gist descriptor.
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Figure 4. Comparison of retrieval results on the Web dataset (12.9
Million images) using different RBM encodings. The retrieval per-
formance increases with the number of bits, but even for 256 bits
we need to look at 4,000 images to �nd 25 of the 50 nearest neigh-
bors obtained using Gist. Nevertheless, the performance is far bet-
ter than LSH (right) which requires more than 50,000 images to
retrieve 25 of the 50 nearest neighbors.

on hashing. The compact binary descriptor for each image
becomes its hash key. Given a query descriptor, we enu-
merate all hash keys having up toD bits different from the
query. Any hash entries found are returned as neighbors,
under our Hamming distance metric. Multiple images hav-
ing the same hash key are stored in a linked list. The draw-
back to this scheme is the large memory requirements since
an N -bit code requires a hash table of size2N . Given the
memory capacity of current PC's, this translates to a practi-
cal maximum of aroundN =303.

For codes longer than 30 bits, we use exhaustive search
– for each query we calculate the Hamming distance to all
images in the database. This would seem prohibitively slow
for millions of images, but the Hamming distance can be
calculated very quickly – it requires an xor followed by a
bit-count operation.

3By using a 2nd (conventional) hash function in conjunction with the
RBM hash function, it is possible to handle codes> 30 bits but the volume
of the Hamming ball quickly becomes prohibitive.

We compared our approach to kd-trees, a standard
method for quick matching. Table 1 shows the time per
image to �nd the closest 5 neighbors to a query point in
both the LabelMe and Web images dataset using a variety of
methods and input representations4. We also compared to
the approximate-NN scheme used by Lowe [17] for match-
ing SIFT vectors. We found this to be faster than ordinary
kd-trees but still much slower than our learnt RBM codes
and gave worse retrieval performance. Speci�cally, for the
LabelMe dataset, retrieving 1000 neighbors using Lowe's
kd-tree took 3ms/image and retrieved 17% of true neigh-
bors, while RBMs took 6� s/image and retrieved 48% of true
neighbors. Note that kd-trees cannot be applied to the Web
dataset due to prohibitive memory requirements and even
when they can be applied (for the LabelMe dataset), they
are much slower than exhaustive search on the compact bit
representation. Even for 12 million images, we can �nd ex-
act nearest neighbors in Hamming space in a fraction of a
second on a fast PC.
3.4. Short Binary Codes for Recognition

From our previous de�nition of semantic similarity, two
images are semantically similar if their segmentations and
object labels are exchangeable. If the retrieval is successful,
the output will be an object label for every pixel in the input
image. For this to work, we need a large database of anno-
tated images so that the database covers most object con�g-
urations. In the �rst set of these experiments we used a large
collection oflabeledimages from the LabelMe dataset. In
that database, the set of street scenes is represented partic-
ularly well. For each such image users have labeled pixels
as belonging to different objects like cars, roads, tree, sky,
pedestrians, etc.

4For the kd-tree, we used a variant known as a spill-tree, using code
from [16].



Dataset LabelMe Web
# images 2� 104 1.29� 107

Gist vector dim. 512 384

Method Time (s) Time (s)
Spill tree - Gist vector 1.05 -

Brute force - Gist vector 0.38 -
Brute force - 30 bit binary 4.3� 10� 4 0.146

” - 30 bit binary, M/T 2.7� 10� 4 0.074
Brute force - 256 bit binary 1.4� 10� 3 0.75

” - 256 bit binary, M/T 4.7� 10� 4 0.23
Hashing - 30 bit binary 6� 10� 6 6� 10� 6

Table 1. Timings for different methods of �nding the 5 nearest
neighbors to query vectors from the LabelMe dataset (2nd column)
and the web images dataset (3rd column). Rows 2 and 3 detail the
size of the dataset and the dimensionality of Gist vectors. Using
the standard Gist descriptor to represent each image results in slow
matching since it must be performed in a high dimensional space.
Ef�cient methods such as spill-trees offer no advantage over brute
force in such settings. Note that for the web images dataset, the
raw Gist vectors cannot �t into memory so timings cannot be com-
puted. By contrast, our binary codes can be matched quickly by
brute force search. Using multi-threading (M/T) on a quad-core
processor offers signi�cant performance gains. We also list the
timing of our 30-bit hashing scheme, whose run time is indepen-
dent of the database size, being approximately 105 times faster that
matching in the original Gist descriptor space.

Figure 6 shows some labeling results. For each test im-
age we select the 50 nearest neighbors, then for each pixel
we assign the object label that has more votes at that pixel
location. The �nal performance corresponds to the percent-
age of pixels correctly labeled. Fig. 7 summarizes the re-
sults on 2000 test images. It is important to note that the
performances are bounded by the dataset. If one image does
not have another similar image in the dataset, then we can
not provide a segmentation. The black line in Fig. 7(a),(b)
represents the maximal performance of the labeling task
achieved when we use the true neighbors. On average, 68%
of the pixels are correctly labeled.

We also performed a larger scale experiment on the Web
images dataset. 2000 test examples were selected at random
and manually labeled as being one of six classes (person, lo-
cation, plant, animal, device, junk). For each test image, we
found the closest 500 images in the 12.9 million and used
the text label from the neighbors to vote on the class la-
bel, using Wordnet voting in the manner of [28]. This gave
a con�dence score as to the presence/absence of each ob-
ject class in the image. Fig. 8(a) shows the recall-precision
curve for the person class, while Fig. 8(b) shows the rela-
tive performance codes for all 5 classes to the original Gist
descriptor. This �gure shows that in a recognition task, for
such a large dataset, we need more than 30 bits. Around
256 bits, performances are comparable to those achieved
with the uncompressed Gist descriptor.
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Figure 7. Pixel labeling experiment. a) Performance as a function
of con�dence (the agreement in votes provided by the retrieved
images). Each bin contain 10% of the images from the test set.
Note that for 20% of the images, around70%of the pixels are cor-
rectly labeled. b) Average percentage of pixels correctly labeled as
a function of the number of bits used for each code.
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Figure 8. Recognition on Web images dataset. Left: recall-
precision curves for the person category. Right: performance of
binary codes (using average precision), relative to full Gist de-
scriptor.

4. Discussion

One of the lessons of modern search engines is that even
very simple algorithms can give remarkable performances
by utilizing data on an Internet scale. It is therefore very
tempting to apply such an approach to object recognition.
But any research in this direction immediately runs into
daunting problems of computation — imagine trying to
download 80 million images, to say nothing of doing ex-
periments with such a huge database. Ef�cient schemes of
representation and matching are needed.

In this paper we have presented such schemes. We have
shown that using recent developments in machine learn-
ing, it is possible to learn compact binary codes for large
databases (as few as 256 bits per image). With these codes,
a database of 12.9 million images takes up less than 600
Megabytes of memory and can �t on a memory stick. Fur-
thermore, we have shown that fast querying is possible
on this database on a standard PC. We plan to make the
database and the querying tools publically available and
hope this will help push object recognition research towards
the Internet-scale challenge.
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