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Homography Estimation∗

1. From 3D to 2D Coordinates
Under homography, we can write the transformation of points in 3D from camera 1 to camera 2 as:

X2 = HX1 X1,X2 ∈ R
3 (1)

In the image planes, using homogeneous coordinates, we have

λ1x1 = X1, λ2x2 = X2, therefore λ2x2 = Hλ1x1 (2)

This means that x2 is equal to Hx1 up to a scale (due to universal scale ambiguity). Note that x2 ∼ Hx1 is a
direct mapping between points in the image planes. If it is known that some points all lie in a plane in an image1, the
image can be rectified directly without needing to recover and manipulate 3D coordinates.

2. Homography Estimation
To estimate H , we start from the equation x2 ∼ Hx1. Written element by element, in homogenous coordinates we
get the following constraint:
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In inhomogenous coordinates (x′

2
= x2/z2 and y′

2
= y2/z2),
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Without loss of generality, set z1 = 1 and rearrange:
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(H31x1 + H32y1 + H33) = H11x1 + H12y1 + H13 (6)

y′

2
(H31x1 + H32y1 + H33) = H21x1 + H22y1 + H23 (7)

We want to solve for H . Even though these inhomogeneous equations involve the coordinates nonlinearly, the
coefficients of H appear linearly. Rearranging equations 6 and 7 we get,

a
T
x h = 0 (8)

a
T
y h = 0 (9)

∗Adapted from lecture notes from CSE252b Spring 2004 with permission from Serge Belongie.
1For cameras related by a pure rotation, every scene point can be thought of as lying on a plane at infinity.
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where

h = (H11, H12, H13, H21, H22, H23, H31, H32, H33)
T (10)
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Given a set of corresponding points, we can form the following linear system of equations,

Ah = 0 (13)
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Equation 13 can be solved using homogeneous linear least squares, described in the next section.

3. Homogeneous Linear Least Squares
We will frequently encounter problems of the form

Ax = 0 (15)

known as the Homogeneous Linear Least Squares problem. It is similar in appearance to the inhomogeneous linear
least squares problem

Ax = b (16)

in which case we solve for x using the pseudoinverse or inverse of A. This won’t work with Equation 15. Instead we
solve it using Singular Value Decomposition (SVD).

Starting with equation 13 from the previous section, we first compute the SVD of A:

A = UΣV > =

9
∑

i=1

σiuiv
>

i (17)

When performed in Matlab, the singular values σi will be sorted in descending order, so σ9 will be the smallest. There
are three cases for the value of σ9:

• If the homography is exactly determined, then σ9 = 0, and there exists a homography that fits the points exactly.

• If the homography is overdetermined, then σ9 ≥ 0. Here σ9 represents a “residual” or goodness of fit.

• We will not handle the case of the homography being underdetermined.

From the SVD we take the “right singular vector” (a column from V ) which corresponds to the smallest singular
value, σ9. This is the solution, h, which contains the coefficients of the homography matrix that best fits the points.
We reshape h into the matrix H , and form the equation x2 ∼ Hx1.

4. Homogeneous Linear Least Squares Alternate Derivation
Starting again with the equation Ah = 0, the sum squared error can be written as,

f(h) =
1

2
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T
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h

T AT Ah. (20)
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Taking the derivative of f with respect to h and setting the result to zero, we get

d

dh
f = 0 =

1

2

(

AT A + (AT A)T
)

h (21)

0 = AT Ah. (22)

Looking at the eigen-decomposition of AT A, we see that h should equal the eigenvector of AT A that has an eigenvalue
of zero (or, in the presence of noise the eigenvalue closest to zero).

This result is identical to the result obtained using SVD, which is easily seen from the following fact,

Fact 1 Given a matrix A with SVD decomposition A = UΣV T , the columns of V correspond to the eigenvectors of
AT A.
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