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Abstract a PAC-like sense) algorithm for learning mixtures of Gaus-
sians (Dasgupta, 1999). Random projection can also easily

projection as a promising dimensionality reduc- we have performed experiments on synthetic data from a
tion technique for |earning mixtures of Gaus- Variety of Gaussian mixtures. In these, EM with random
sians. Here we summarize these results and il-  Projection is seen to consistently yield models of quality
lustrate them by a wide variety of experiments (log-likelihood on a test set) comparable to or better than
on synthetic and real data. that of models found by regular EM. And the reduction in

dimension saves a lot of time.

Finally, we have used random projection to construct a clas-
sifier for handwritten digits, from a canonical USPS data
) _set in which each digit is represented as a vectdirf.

It has recently been suggested that the learning of highpye proiected the training data randomly ifté?, and were
dimensional mixtures of Gaussians might be facilitated by,p|e (4 fit 4 mixture of fifty Gaussians (five per digit) to this

first projecting the data into a randomly chosen subspace Qfa¢4 quickly and easily, without any tweaking or covariance
low dimension (Dasgupta, 1999). In this paper we present gugtrictions. The details of the experiment directly cbrro
comprehensive series of experiments intended to precisely,o+«q our theoretical results.

illustrate the benefits of this technique.

1 Introduction

. . Another, very popular, technique for dimensionality reduc
There are two main theoretical results about random prog,, is principal component analysis (PCA). Throughout

jection. The first is that data from a mixture bfGaus- s paner, hoth in conceptual discussions and empirical
sians can be projected into juStlog k) dimensions while gy, gies e will contrast PCA with random projection in
still retaining the approximate level of separation betwee order to get a better feel for each.

the clusters. This projected dimension is independent of

the number of data points and of their original dimension. i . . )

In the experiments we perform, a value fln k works 2 High-dimensional Gaussians
nicely. Second, even if the original clusters are higidy

centric(that is, far from spherical), random projection will 2.1 Some counter-intuitive effects
make them more spherical. This effect is of major impor-
tance because raw high-dimensional data can be expect
to form very eccentric clusters, owing, for instance, te dif 1 1

ferent units of measurement for different attributes. Clus P(%) = (@n) 2512 exp (—5(35 —u)'E Nz - M)) -

ters of high eccentricity present an algorithmic challenge

For example, they are problematic for the EM algorithmlf X is a multiple of the identity matrix, then the Gaus-
because special pains must be taken to ensure that interngian is calledgpherical Some important intuition about the
diate covariance matrices do not become singular, or closeehavior of Gaussians in high dimension can quickly be
to singular. Often this is accomplished by imposing speciapained by examining the spherical GaussiéfD, o21,,).
restrictions on the matrices. Although its density is highest at the origin, it turns out

) - that for | t of th babilit lies f
These two benefits have made random projection the ke, at for ‘argen most of the probabiiity mass lies far away

. U . L . #om this center. A pointX € R”™ chosen randomly
ingredient in the first polynomial-time, provably correict ( from this Gaussian has coordinat& which are ii.d.

*Work done while at University of California, Berkeley. N(0,0?). Therefore its expected squared Euclidean norm

AP n-dimensional GaussiaN (¢, X2) has density function



isE(]|X]?) = >, EX? = no?. Infact, it can be shown The intention is that two Gaussians arseparated if their
quite routinely, by writing out the moment-generating func centers are: radii apart. Our choice ofadius for non-
tion of || X ||2, that the distribution of| X || will be tightly ~ spherical Gaussian¥ (y, X2) is motivated by the observa-
concentrated around its expected value. Specifically, tion that pointsX from such Gaussians hal| X — |2 =

tracgX).
P(||X|? = o%n| > e0c®n) < 277/ €X)

That is to say, for big enough, almost the entire distribu-
tion lies in a thin shell of radius approximatety/n. Thus
the natural scale of this Gaussian is in unitg@fn.

In high dimension, a 2-separated mixture corresponds
roughly to almost completely separated Gaussian clusters,
whereas a mixture that is 1- Gy-separated has slightly
more (though still negligible) overlap. What kind of sep-
This effect might arouse some initial skepticism becausevration should be expected of real data sets? This will vary
it is not observable in one or two dimensions. But it canfrom case to case. As an example, we did some simple
perhaps be made more plausible by the following explanaanalysis of a collection of 9,709 handwritten digits from
tion. The GaussiaV (0, I,,) assigns density proportional USPS, where each digit was represented as a vector in 256-
toe—P""/2 to points on the surface of the sphere centered a@limensional space. We fit a mixture of ten Gaussians to
the origin and of radiup/n, p < 1. But the surface area the data, by doing each digit separately, and found that this
of this sphere is proportional {p\/n)" . For largen, as ~ Mixture was 0.63-separated.

p_T 1 this surface area is growing much faster_t_han the d_enOne way to think about high-dimensionaseparated mix-
sity is decaying, and thus most of the probability mass lieg e is to imagine that their projections to any one coordi-

at distance abouy/n from the origin (Bishop, 1995, exer- p4te are--separated. For instance, suppose that measure-
cise 1.4). Figure 1 is a graphical depiction of this effect fo ,ants are made on a population consisting of two kinds
various values o. of fish. Various attributes, such as length and weight, are
The more general Gaussiavi(0, ) has ellipsoidal con- recorded. Suppose also that restricting attention to ary on
tours of equal density. Each such ellipsoid is of the formattribute gives a 1-separated mixture of two Gaussians in
{z : 2T¥~'z = r?}, corresponding to points at a fixed R!, which is unimodal and therefore potentially difficult to
Mahalanobis distancgz (s, = VZTY 17 from the center  l€arn. quever, if several (say ten) ir?deper?dent attribute
of the Gaussian. The principal axes of these ellipsoids ar@'€ considered together, then the mixture®i will re-
given by the eigenvectors &f. The radius along a particu- Main 1-separated but will no longer have a unimodal distri-
lar axis is proportional to the square root of the correspondPution. Itis precisely to achieve such an effect that mletip
ing eigenvalue. Denote the eigenvalues\hy< - -- < \,. attributes are used. This improvement in terms of better-
We will measure how non-spherical a Gaussian is by itsdefingd clu.sters.is bought at the price .of an inc_rease in di-
eccentricity namely/X,/;. As in the spherical case, mer_13|onallty. !t |s_then up to the learning algorithm to ef-
for large n the distribution of N'(0, %) will be concen- fectively exploit this tradeoff.

trated around an ellipsoidal shellk||3, ~ n. Yet, if & tis worth clarifying that our particular notion of separa-
has bounded eccentricity, this distribution will also be<o  tion corresponds to the expectation that at least some frac-
centrated, perhaps less tightly, around a spherical shefjon of the attributes will provide a little bit of discrimén

[#]]? = A1+ -+ + X, = tracgX). tive information between the clusters. As an example of
o _ when this isnotthe case, consider two spherical Gaussians
2.2 Formalizing separation N(p,I,) andN(us2, I,) in some very high dimension,

) ) ) ) . and suppose that only one of the attributes is at all useful.
It is reasonable to imagine, and is borne out by experiencg, other words; andy» are identical on every coordinate

with techniques like EM (Duda and Hart, 1973; Rednerg,ye one. We will consider these clusters to be poorly sep-
and Walker, 1984), that a mixture of Gaussians is easiest ated — their separation @(n~1/2) — even though clus-

to learn when the GQauSS|ans do not overlap too much. OYging might information-theoretically be possible.
discussion ofN (u, o< 1,,) suggests that it is natural to de-
fine theradiusof this Gaussian as./n, which leads to the

following 3 Dimensionality reduction

Definition Two GaussiansV(u1,02%1,) and N (uz2, 021,,)

are c-separatedf |1 — pz|| > co/n. More generally, Dimensionality reduction has been the subject of keen

GaussianV (1, 31) andN (u2, X2) in R™ arec-separated ~ study for the past few decades, and instead of trying to

if summarize this work we will focus upon two popular

contemporary techniques: principal component analysis

1 = el = e/max{tracdy), trace¥,)}- (PCA) and random projection. They are both designed for

A mixture of Gaussians ig-separated if its component data with Euclideanl{2) interpoint distances and are both

Gaussians are pairwigeseparated. achieved via linear mappings.
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Figure 1: How much of the probability mass %0, I,,) lies at radiusy/n from the origin? Graphs fai = 1, 2, 10, 20.

The linear projection of a Gaussian remains a Gaussiaralgorithms. Part of PCA's appeal lies in the fact that it cor-
Therefore, projecting a mixture of high-dimensional Gaus-responds to an optimization problem which can be solved
sians onto a single line will produce a mixture of univari- exactly and efficiently, via eigenvalue computations. Its
ate Gaussians. However, these projected clusters mightinning time is polynomial, but is nonetheless rather high:
be so close together as to be indistinguishable. The mai®(n?) for n-dimensional data.

guestion then is, how much can the dimension be reduc:egy how much can PCA reduce the dimension of a mixture

while still maintaining a reasonable amount of separation . . ) .
. of k¥ Gaussians? It is quite easy to symmetrically arrange
between different clusters?

a group ofk spherical Gaussians iR*/? so that a PCA
projection to any smaller dimension will collapse some of
the Gaussians together, and thereby decisively derail any

Principal component analysis is an extremely importantho,pe of Itearnlng:thFor mstlance, place t.hf centelrs of the
(25 — 1)%* and 25" Gaussians along thg" coordinate

tool for data analysis which has found use in many exper-

imental and theoretical studies. It findsadimensional &% at positiongj and _j'. The eigenvectors fo_und b_y
o ... PCA will roughly be coordinate axes, and the discarding
subspace oR™ which captures as much of the variation

. . . . of any eigenvector will collapse together the correspogdin
in the data set as possible. Specifically, given data pair of Gaussians. Thus PCA cannotin general be expected

3.1 Principal component analysis

. it finds the linear projection t&? for which . . X .
oo wm} pro) to reduce the dimension of a mixture/ofaussians to be-
m low Q (k).
* %2
; o =47l We will next consider a technique which is much faster

than PCA, just linear in the dimension, because the choice
is maximized, where; is the projection of point; andi.*  of projection does not depend upon the data at all. A
is the mean of the projected data. low-dimensional subspace is picked at random, and it can

PCA is sometimes viewed as one of many possible procet—)e shown that with high probability over the choice of

dures forprojection pursuiHuber, 1985), that is, for find- sub_space, the pr_ojected clusters (in that SUbSp".ﬂ:e? wil
ing interesting projections of high-dimensional data. - Dif retain the approximate level of separation of their high-

ferent notions of “interesting” lead to different projeanii dimensional counterparts. This use of randomness might



over the choice of random projection, the eccentricity of
the projected covariance matrix will be at mdst+ e. In
particular, if the high-dimensional eccentricityis at most
n'/2C5 *(log 1 + dlogd)~1/2 then with probability at
Before projection After projection leastl — ¢, the projected Gaussians will have eccentricity

at most two.

Figure 2: The effects of random projection: the dimen-

sion is drastically reduced while the clusters remain well-Random projection offers many clear benefits over princi-

separated and become more spherical. pal component analysis. As explained earlier, PCA can-
not in general be used to reduce the dimension of a mix-

ture of & Gaussians to belof2(%), whereas random pro-

seem suboptimal; one might be tempted to a_ssert that “ij%ction can reduce the dimension to j@tlog k). More-
must be possible to do better by actually taking the datq,er pcA may not reduce the eccentricity of Gaussians.
into account”. However, we are unaware of any determinisThase two factors ruled out the use of PCA in the design

tic procedures which have the performance guarantees thgt 5 polynomial-time, provably correct (PAC-style) algo-

will shortly be presented. Randomness is now a standarflinm for mixtures of Gaussians (Dasgupta, 1999). How-
tool in algorithm design; for instance, it is the basis of thegor if the projected dimension is high enough, then a

only known polynomial-time algorithm for primality test- pca_projected mixture could easily be far better separated

: sian is projected into a randomly chosen subspace of di-
) mensiond. There is a universal constard; such that
for any d,e € (0,1), if the original dimension satisfies
. n > Cy- % (log L +dlog ¢), then with probability> 1 — &

Ing. than its randomly projected counterpart. For this reason
PCA remains an important tool in the study of Gaussian
3.2 Random projection clusters.

The following dimensionality reduction lemma applies to There is a related distinction between PCA and random
arbitrary mixtures of Gaussians. Its statement referseo thprojection which might be of some practical relevance. As
notion of separation introduced earlier, and implies that b the projected dimension is decreased, as it drops below
random projection, data from a mixture/ofGaussians can logk, random projection suffers a gradual degradation in
be mapped into a subspace of dimension §@@&bg ). performance. That is, the separation between the clusters

is slowly eroded. On the other hand, the degradation suf-
Lemma 1 (Dasgupta, 1999)For any ¢ > 0, pick ac-  fered by PCA is not necessarily so gradual. In the “sym-
separated mixture df Gaussians irR™. Letd,e € (0,1) metric” example considered earlier, any PCA projection to
designate confidence and accuracy parameters, respeet > k/2 dimensions has good separation, while a projec-
tively. Suppose the mixture is projected into a randomlytion to k/2— 1 dimensions has zero separation. Admittedly,
chosen subspace of dimensién> % In § whereCy is  thisis in part an artefact of our particular definition of sep
some universal constant. Then, with probabilityl — 6  aration.

over the choice of subspace, the projected mixturRdn A random projection from: dimensions tal dimensions is
will be (ey/1 — €)-separated. pro)

represented by d x n matrix. It does not depend on the

This method of projection has another tremendous bengd@t@ and can be chosen rapidly. Here is an algorithm which
fit: we show that even if the original Gaussians are highlygenerates the correct distribution over matrices.

skewed (have ellipsoidal contours of high eccentricity),

their projected counterparts will be more spherical (Fig- e Set each entry of the matrix to an i.itf.(0, 1) value.

ure 2). Since it is conceptually much easier to design al-

gorithms for spherical clusters than ellipsoidal oness thi e Make thed rows of the matrix orthogonal by using the
feature of random projection can be expected to simplify Gram-Schmidt algorithm, and then normalize them to
the learning of the projected mixture. unit length.

Definition For a positive definite matri, let A, (%)

and A, () refer to its largest and smallest eigenvalues, This takesO(d*n) time overall. An even faster method,

respectively, and denote y>:) theeccentricityof the ma- ~ Which takes time only)(dn), is simply to choose each en-

trix, that is, v/ Mnaz (%) / Amin (2)- try of the matrix uniformly and independently from1, 1].
This does not precisely generate the distribution we want

Lemma 2 (Dasgupta, 1999)Consider any Gaussian in but will also work well (Achlioptas, 2000; Arriaga and

R™; let £ denote its eccentricity. Suppose this Gaus-Vempala, 1999).




Projected separation vs. initial dimension Projected separation when reduced dimension d = 10 log k
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Figure 3: The projected dimensiod & 20) does not de- Figure 4:d = 101Ink works nicely to keep the projected
pend upon the original dimension. clusters well-separated.

Projecting a 50—dimensional Gaussian of eccentricity 1000
10° ! ! . ; —

3.3 lllustrative experiments

The lemmas of the previous section can be illustrated by
a few simple experiments. The first two of these examine
what happens when a 1-separated mixture@hussians in

R™ is randomly projected int®?. The main question is, in
order to achieve a fixed level of separation in the projected
mixture, what value ofl must be chosen? How will thig
vary with n andk?

107

107

Eccentricity of projected Gaussian

The first experiment, depicted in Figure 3, is intended to
demonstrate that does not depend upen that is, the pro-
jected dimension is independent of the original dimension 1 ‘ ‘ ‘ ‘ ‘
of the data. Here two 1-separated spherical Gaussians are ~ * ® * * . ® %
projected intdR?" and their separation is noted as a func-
tion of n. The error bars are for one standard deviation in
either direction; there are 40 trials per valueof

Reduced dimension (d)

Figure 6: The eccentricity* in R? of a projected Gaussian
whose original eccentricity iR?° isE = 1, 000.

The second series of tests (Figure 4) randomly projects 1-

separated mixtures df spherical Gaussians iR'%° into

d = 101nk dimensions, and then notes the separation o = 1,000, and then projects this Gaussian into succes-
the resulting mixtures. The results directly corroboratesively lower dimensiong9, 48,47, ..., 25. Notice that the
Lemma 1. The mixtures created for these tests are maxs-axis of the graph has a logarithmic scale. Also, the er-
imally packed, that is, each pair of constituent Gaussiansor bars no longer represent standard deviations but ihstea
is 1-separated. There are 40 measurements taken for easpan the maximum and minimum eccentricities observed
value ofk. over 40 trials per value of.

The last two experiments, shown in Figures 5 and 6, docuWe end this section with a simple experiment which will
ment the dramatic decrease in eccentricity that can accontlarify some of the differences between random projection
pany the random projection of a Gaussian. The first ofand PCA. Our earlier “bad example” (Section 3.1) was in-
these projects a Gaussian of high eccentrigitiyom R" tended to show that PCA cannot in general reduce the di-
into R2Y and measures the eccentricity of the projec- mension belowQ(k). Although it clearly demonstrated
tion, over a range of values efandn. Here matrices of this, it required a symmetric arrangement of clusters that i
eccentricitye are constructed by sampling the square rootaunlikely to occur in practice. We feel that PCA suffers from
of their eigenvalues uniformly from the rangk E], and  a more fundamental flaw, namely, that it is apt to be con-
making sure to include the endpoiritende. The last ex- fused by very eccentric Gaussians. This is not hard to vi-
periment fixes a particular GaussianRA° of eccentricity ~ sualize: in its attempt to pick important directions, it wu



Eccentricitye n
in R™ 25 50 75 100 200
50 954+3.80 | 3.44+0.62 | 2.54+0.29 | 2.24+0.17 | 1.7+ 0.07
100 13.1£5.79 | 3.5£0.57 | 25+£0.26 | 22+£0.19 | 1.7£0.08
150 13.0+7.40 | 3.5+0.55 | 25+0.25 | 2.2+0.14 | 1.7+ 0.07
200 14.74+8.04 | 3.4+0.50 | 25+0.22 | 2.2+0.19 | 1.7+ 0.06

Figure 5: Reduction in eccentricity — g*, for a variety of starting dimensions Values in the table represent eccentric-
itiese* in the projected spadg?’, plus or minus one standard deviation. Each table entryeisetbult of 40 trials.

easily be misled into choosing directions in which individ- The final answer might not be a local maximum of the like-
ual Gaussians have high variance, instead of directions dihood surface. If this is an issue, EM can be run for further
high intercluster distance. rounds in the high-dimensional space; we have not done so

. . . iH our experiments. We will also use a similar procedure,
In this experiment, data is generated from a 0.5-separateWith PCA in place of random proiection. for bUrnoses of
mixture of five Gaussians R'°°. The Gaussians have dif- P proj » or purp

ferent diagonal covariance matrices of eccentricity Looocompanson.
The data are projected into 10-dimensional space usin
PCA and random projection, and the resulting separations;

between.all pairs of cluster§, are shown in .Flgure 7. R.anWe have observed the performance of EM with and without
dom projection works predictably, preserving separation

) . . fandom projection on data from a wide variety of Gaussian
but PCA virtually collapses all the clusters into one. It is pro] y

X o Lo . mixtures. We now discuss a few of these experiments.
fooled into picking directions which correspond to the ec- P
centricity of individual Gaussians, and captures verielitt The mixtures used were indexed by: the dimensigrihe
of the intercluster variation. number of Gaussians; the eccentricity of the covariance

L . matricesE; and the separation between the cluster#s
Random projection guarantees a certain level of perfor- ' . . . .
mance regardless of the individual data set. PCA can oc.' the previous section, a covariance matrix of eccenricit
casionall gdo much better, but seems less réliable Its use- was chosen by sampling the square roots of its eigen-

y e ' o ”» values uniformly from[1, E], and making sure to always
fulness varies from data set to data set, and it is partigular .

. ; . . include the two endpoints, E. The Gaussians were po-
susceptible to proble.ms in the case of highly eccem.”oc!ussitioned to be packed as tightly as possible subject to the
ters. Perhaps a hybr!d scheme might work well, which f'r.Stc-separation requirement. Each mixing weight was chosen
uses random projection to make the clusters more Spherlc?Lrlom a distribution which was not too far from uniform over

and then applies PCA for a further reduction in dmensmniﬁ’ %]’ and of course they summed to one. ket 11;, ;
denote the true mixing weights, means, and covariance ma-
4 Random projection and EM trices, and lets\”, ("), =" denote the estimated parame-

ters at timet.

2 Experiments on synthetic data

4.1 Asimple algorithm It is common to not allow each cluster its own full covari-

EM is at present the method of choice for learning mixturesANce matrix, beca_luse of the Iarg_e numbe_r O.f parameters in-
of Gaussians and it is therefore important to find a way of\’0|ved: Wwe con5|dered_ one typical restriction: v_vhere the
integrating it with random projection. We suggest a VeryGau55|ans all share a single full covariance matrix.
simple scheme. There is also the important issue of initialization. We
started all mixing Weightwgo) equal, and chose the initial
e Project the data into a randomly chogkdimensional centersugo) randomly from the data set. The correspond-
subspace. ing covariance matrices were forced to be spherical at the

_ , outsetS\” = {21 with variance parameter
e Run EM to convergence on the low-dimensional data.

. _ 2 _ 1 0 ()2

e Take the fractional labels from EM's final soft- % T3, j;?H“j pi I
clustering of the low-dimensional data, and apply
these same labels to the original high-dimensionaMVe do not know the origin of this initializer but have found
data. This yields estimates of the high-dimensional slight variant of it mentioned in Bishop’s (1995) text. If
means, covariances, and mixing weights. the clusters were restricted to have the same covariance,

then the minimum of all thefo) was chosen as the com-
e Run EM for one step in high dimension. mon value.
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Figure 7: A 0.5-separated mixture of five Gaussian®If? is projected intdR'® using PCA (on the left) and random
projection (on the right). The resulting intercluster sapians are shown.

For the first set of experiments we created mixtures of fivaion properties, since the true clusters were spherical.

Gaussians which were 1-separated and which had the SaM, also conducted the same tests using PCA in place of

sphericalcovariance matrixg = 1,k = 5,c = 1). The random projection. In terms of log-likelihoods on test data

training data consisted of 1,000 i.i.d. samples from such %oth dimensionality reduction techniques performed about
mixture; an additional 1,000 samples were drawn as tes y q P

data. We attempted to fit the training data with a mixture Ofequally well.

five Gaussians with full common covariance matrix. In a second set of experiments, we generated data from a
mixture of thred).8-separated Gaussians witiferentco-
variance matrices of eccentricity 2b & 3,E = 25,¢c =

) 8.8). We used a similar setup to that of the first experiment,
learned. In the latter case, the _flnal_valug@? Was Con- ith training and test sets consisting of 1,000 data points.
S|d?red a close enough approximationuaf the Ly error g time, we allowed the learned Gaussians to have un-
118" — pi]| was at most a third the radius of the true Gaus-restricted and different covariances. There was again an
sian N (i, %;). Criterion (2) was satisfied only #very  advantage in using random projection. For instance, given
center was well-approximated in this way. data inR'%°, EM with projection down to 25 dimensions

A variety of starting dimensions was chosem = beat regular EM (in terms of log-likelihood on a test set)
50,100, 150, 200. For each, 40 mixtures were generated,69% of the time, and doubled ticcess probabilitfrom
and from each mixture, a training and test set were drawr 7/ t0 76%. At the same time, the average number of it-
On each data set, we conducted 40 trials in which regulagrations required by EM on the projected data 8256,
EM was matched against EM with random projection to@S opposed t8.76 on the high-dimensional data. This in-
d = 25 dimensions. In total therefore, 1,600 trials were créase was still more than offset by the time required re-
conducted per value of. The averaged results can be auired per iteration100® = 25% x 64.

seen in Figure 8. Theuccess probabilitdenotes the frac-

tion of trials_ in whichall centers were correctly learned (in 43 Experiments with OCR

the approximate sense mentioned above). In these experi-

men_ts, regular EM suffered a curse_(_)fdlmensmnalltw 45 To reassure ourselves that random projection is robust to
was increased, the success probability dropped sharply, e quirks of real data, we have used it as part of a simple

thegurrlllbelr of |tetrat|c;ntshreqw][ed for Convfgll\/?m’?tehmC“%aseclassifier for handwritten digits. The training data cotesis
gra u?_ y-ncon rads ,b e{:)etr %rlma_lljt::elo ttWWI ran fcf[rr?of 9,709 labeled instances of handwritten digits collected
projection remained about stable. 1he 1ast Wo rows o y USPS. Each was represented as a vectdr in 1]256,

table measure the percentage of trials in which our varianéOrresponding to somies x 16 bitmap. A certain amount of
(.)f E.M was strictly better than regular EM (in terms Of log- reprocessing had been performed; details can be found in
likelihood on the test data) and the percentage of trials o ther studies which use this canonical data set, for instanc

V.Vh'Ch the twq were equally mat_ched.. Notg that all like- hat of Cortes and Vapnik (1995). There was a test set of
lihoods are with respect to the high-dimensional data an 007 instances

can therefore be compared. As the dimensiaises, the

advantage of using random projection with EM becomed/Ne constructed the classifier in a straightforward manner.
more and more clear. The number of low-dimensional iterFirst a random projection frog?>¢ to R? was fixed, for
ations needed by our adaptation of EM is slightly more tharsome small (double-digit) dimensieh Then the training
that required by regular EM; however, each of these low-data was projected into the low-dimensional space. A mix-
dimensional iterations is much quicker, taking time prepor ture of fifty Gaussians was fit to the data, five Gaussians per
tional tod? instead ofn3. digit, by using EM on the instances of each digit separately.

. .. The five Gaussians for each digit had a shared covariance
Notice that the advantage conferred by random projeCt'o'?natriX' there were no other restrictions. No attempt was

did not in this instance depend upon its eccentricity reduc-made to reconstruct the high-dimensional parameters,

We used two measures of quality: (1) log-likelihood on
the test data; (2) whether the true means were correctl



n 50 100 | 150 | 200

Regular EM:
Success probability(%) 435 | 36.6 | 29.2 | 23.1
Average number of iterations 14.81| 14.19| 15.10| 16.62
Random projection + EM:
Success probability(%) 48.0 | 479 | 47.1 | 48.6
Average number of iterations 19.06| 19.41| 19.77| 19.77

Log-likelihood on test set:
Our EM exactly matched regular EM 0.00 | 4.12 | 7.19 | 5.44
Our EM beat regular EM 52.81| 54.94| 60.25| 66.94

Figure 8: A comparison of regular EM and our variant on tesa ad different dimensiona. The last two lines indicate
the percentage of trials in which our method exactly matardzkat regular EM.

 Performance of the handwritten digit lassifier (the instances of) each digit. We made a few measurements
on the resulting ten Gaussians, to get an idea of the eccen-
oaf I S S | tricity of the individual clusters and the separation betwe
R them. The results are presented in Figure 10. The first
931 i 1 point of interest is that the clusters have enormous eccen-
' tricity. It is easy to see why: for any given digit, some of
the coordinates vary quite a bit (corresponding to central
pixels) whereas other coordinates have negligible vaganc
(for instance, border pixels). The resulting covariance ma
%0l ° | trices of the clusters are so ill-conditioned that it is difilt
' to reliably perform basic linear algebra operations, like d
8ol ' : terminant or inverse, on them. For this reason, we were
unable to run EM in the original high-dimensional space.
88, 20 20 60 80 100 120 Various possible fixes include adding Gaussian noise to the
Dimension of the projected space data or placing strong restrictions on EM’s covariance es-
timates. The key point is that using random projection, we

Figure 9: Performance of the digit classifier for a varietywere able to run EM on the data with no tweaking whatso-
of projected dimensions. Dots indicate single trials,lesc  ever,

indicate averages.
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Why exactly was this possible? To find the answer, we

picked one random projection into 40-dimensional space,

and carried out the same analysis as above on the projected
In order to classify a test instance, it was first mapped intajata. The results can be seen in Figure 11. The separa-
d-dimensional space using the projection which was fixedion between the clusters remained about the same as in the
at the outset. Then the instance was assigned to the lowriginal space, and the eccentricity of each cluster was re-
dimensional Gaussian which assigned it the highest condduced drastically, corroborating the theoretical resoiées
tional probability. sented earlier.

This process was repeated many times, for various valueg/e also conducted these experiments using PCA, and once

of d ranging from 20 to 100. The results appear in Fig-again, the optimal success rate of about 94% was obtained
ure 9. The measure of performance is the usual one, pepsing a projection tad > 40 dimensions.

centage accuracy on the test set. It can be seen that the

optimal performance of abo@t% was attained af = 40

or d = 50 and that higher values dfdid not noticeablyim- © AN open problem

prove performance. This corroborates our view throughout

that even if data is high-dimensional, a random projectiorThis paper attempts to document carefully some of the ben-
to a much smaller space can preserve enough informatioefits of using random projection for learning mixtures of
for clustering. The error rate was not exceptionally goodGaussians. But what about other mixture models? For in-
(there are systems which have just o4& error), but was  stance, mixtures of tree-structured distributions hawenbe
reasonable for a classifier as naive as this. used effectively in the recent machine learning literature

We then performed a little bit of exploratory data analysis.by Meila, Jordan, and Morris (1998).

In the original 256-dimensional space, we fit a Gaussian té&\ fascinating result of Diaconis and Freedman (1984)



Digit 0 1 2 3 4 5 6 7 8 9 Eccentricity
0.00] 161| 093] 1.01] 1.18] 0.88] 0.82| 1.31| 1.00| 1.11 || 1.32 x 10®
161| 0.00| 1.04| 1.38| 1.06 | 1.27| 1.29| 1.19 | 1.23| 1.22 || 4.78 x 10'3
0.93| 1.04| 0.00| 0.70| 0.81 | 0.82| 0.78 | 0.75| 0.63 | 0.78 || 1.13 x 10®
1.01| 1.38| 0.70 | 0.00 | 0.97 | 0.65| 1.02 | 0.98 | 0.71 | 0.88 || 4.86 x 10°
1.18| 1.06 | 0.81 | 0.97 | 0.00 | 0.97 | 0.90| 0.91 | 0.77 | 0.64 || 4.22 x 108
0.88| 1.27 | 0.82 | 0.65| 0.97 | 0.00| 0.70 | 1.06 | 0.70 | 0.85 || 1.88 x 10*
0.82| 1.29| 0.78| 1.02| 0.90 | 0.70| 0.00 | 1.31 | 0.83| 1.09 || 6.84 x 10®
1.31| 1.19| 0.75| 0.98| 0.91 | 1.06 | 1.31| 0.00 | 0.97 | 0.70 || 6.02 x 10"
1.00| 1.23| 0.63| 0.71| 0.77 | 0.70 | 0.83| 0.97 | 0.00 | 0.65 || 2.32 x 108
1.11| 1.22| 0.78| 0.88| 0.64 | 0.85| 1.09 | 0.70 | 0.65| 0.00 || 1.04 x 10°

©Co~NOoOOOTh~WNEO

Figure 10: Separation between the digit®it?%, that is, before projection. The rightmost column indisdtes eccentricity
of each digit’s cluster.

Digit 0 1 2 3 4 5 6 7 8 9 Eccentricity
0.00] 158 096 1.01| 1.14| 0.81| 0.83| 1.23| 1.07| 1.10 || 31.51
158 | 0.00| 1.07| 1.23| 1.03| 1.30 | 1.45| 1.20| 1.24 | 1.17 || 66.41
0.96 | 1.07 | 0.00| 0.73| 0.76 | 0.88 | 0.82 | 0.68 | 0.58 | 0.63 || 24.25
1.01|1.23|0.73| 0.00| 097 | 0.77 | 1.13| 0.87 | 0.76 | 0.80 || 17.87
114 | 1.03| 0.76 | 0.97 | 0.00 | 0.87 | 0.79 | 0.84 | 0.72 | 0.57 || 28.06
0.81| 1.30| 0.88| 0.77| 0.87| 0.00 | 0.71| 1.08 | 0.84 | 0.81 || 18.72
0.83| 145| 0.82| 1.13| 0.79| 0.71 | 0.00 | 1.34| 0.91 | 1.06 || 25.53
1.23|1.20| 0.68| 0.87| 0.84| 1.08 | 1.34| 0.00 | 0.87 | 0.61 || 34.01
1.07| 1.24| 058| 0.76 | 0.72 | 0.84 | 0.91| 0.87 | 0.00 | 0.50 || 23.37
1.10| 1.17 | 0.63| 0.80| 0.57| 0.81 | 1.06 | 0.61 | 0.50 | 0.00 || 32.21
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Figure 11: Separation between the digit®it!, that is, after projection, and the eccentricity of eaclsigu

shows that a wide variety of high-dimensional distribu-  and its Applicationsvol. II. New York: Wiley.

tions look more Gaussian when randomly projected into aHuber, P. (1985) Projection pursuifAnnals of Statistics
low-dimensional subspace. This follows from central limit ~ 13(2):435-475.

theorems, specifically the Berry-Esséen theorem (FellefMeila, M., Jordan, M. & Morris, Q. (1998) Estimating de-
1966), and suggests an unusual methodology for learn- pendency structure as a hidden variable. MIT technical
ing a broad class of mixture models: randomly project report Al-1648.

the data, fit a mixture of Gaussians to the resulting low-Redner, R. & Walker, H. (1984) Mixture densities, maxi-
dimensional data to cluster it, and then use the induced mum likelihood and the EM algorithnSIAM Review
(soft or hard) clustering in the original high-dimensional  26(2):195-239.

space to learn the high-dimensional component distribu-

tions. This promising scheme merits much closer study.

Literature cited

Achlioptas, D. (2000) Personal communication.

Arriaga, R. & Vempala, S. (1999) An algorithmic theory
of learning.IEEE Symposium on Foundations of Com-
puter Science.

Bishop, C. (1995Neural networks for pattern recognition.
New York: Oxford University Press.

Cortes, C. & Vapnik, V. (1995) Support-vector networks.
Machine Learning20(3):273-297.

Dasgupta, S. (1999) Learning mixtures of GaussiecE
Symposium on Foundations of Computer Science.
Diaconis, P. & Freedman, D. (1984) Asymptotics of graphi-
cal projection pursuitAnnals of Statistigsl2:793-815.
Duda, R. & Hart, P. (197 Fattern Classification and Scene

Analysis.New York: John Wiley.
Feller, W. (1966)An Introduction to Probability Theory



