- 博客(1436)
- 资源 (5)
- 收藏
- 关注

原创 python3案例和总结-专栏介绍和目录
本专栏专注于Python基础和进阶的系统讲解,逐步深入实际应用场景到python高级特性,让你轻松学会用Python解决各种实际问题。不管是零基础还是有经验的开发,相信都能从本专栏获益。
2025-03-17 19:28:36
7976
1

原创 爬虫和逆向教程-专栏介绍和目录
本专栏为爬虫初学者和进阶开发者量身定制的爬虫和逆向学习园地。为你提供全面而深入的爬虫和逆向技术指导,从入门到精通,从基础理论到高级实战,助你在数据的海洋中畅游,挖掘出有价值的信息。通过本专栏的学习,你将具备独立开发和优化爬虫程序的能力,及逆向分析能力和项目开发能力,成为爬虫领域的佼佼者。
2025-02-28 20:26:59
11179
5

原创 备考信息系统项目管理师-专栏介绍和目录
本专栏会持续详细梳理软考高级信息系统项目管理师(高项)的考点、所有历年真题(包括综合知识、案例分析、论文)等,有论文专项,预测模拟题等内容。需要的可以先订阅下哦。
2024-12-12 22:10:22
12143
2
原创 机器翻译:模型微调(Fine-tuning)与调优详解
摘要: 微调(Fine-tuning)和调优(Hyperparameter Tuning)是优化预训练模型(如mBART、T5)的关键技术。微调通过领域数据调整模型参数,提升特定任务(如机器翻译、文本分类)的性能,具有数据效率高、计算成本低的优势。常见方法包括全参数微调、适配器微调和LoRA。调优则通过优化学习率、批次大小等超参数提高训练效率,常用工具如Optuna和Ray Tune。两者结合可显著提升模型表现,尤其在低资源或专业领域(如医疗、金融)场景中。企业级应用建议结合领域自适应和持续学习策略。
2025-08-15 18:59:57
551
2
原创 低资源语言翻译:数据增强与跨语言迁移学习策略
低资源语言(Low-Resource Languages, LRLs) 的机器翻译(Machine Translation, MT)是自然语言处理(NLP)领域的重大挑战之一。由于缺乏大规模平行语料库,传统的神经机器翻译(Neural Machine Translation, NMT)模型难以直接应用。
2025-08-15 18:59:08
598
原创 机器翻译:Hugging Face库详解
Hugging Face的Transformers库为机器翻译提供了强大的支持,其核心优势在于:1)提供丰富的预训练模型(如BERT、GPT、T5等)和统一API接口;2)通过transformers、datasets、tokenizers三大核心库构建高效NLP工作流;3)支持多框架兼容和模型量化优化。该生态系统的核心理念是"民主化AI",通过标准化工具链和开源社区降低使用门槛。典型案例展示,仅需几行代码即可完成从文本预处理到翻译结果输出的完整流程,显著提升开发效率。
2025-08-14 19:45:36
877
2
原创 机器翻译:回译与低资源优化详解
本文探讨了机器翻译在低资源语言对中的瓶颈问题及解决方案。传统神经机器翻译依赖平行语料库,但低资源语言(如中文-藏语)难以获取高质量语料。主要解决方法包括回译技术和低资源优化策略。回译通过反向翻译模型创造伪平行数据,能有效扩充训练集但存在误差累积问题。低资源优化则从数据、模型和架构三个层面提升性能,包括多语种联合训练、参数共享、知识蒸馏等方法。实际应用中,回译常与预训练模型等技术结合使用,形成互补优势。研究表明,在尼泊尔语-英语翻译任务中,这种组合方法可使BLEU值显著提升7.2分。
2025-08-14 19:30:24
581
原创 预训练模型在机器翻译中的应用:迁移学习的优势详解
预训练模型和迁移学习的出现,彻底改变了这一局面。它就像让一个已经精通了多种语言(如英语、法语、西班牙语)的顶尖语言学家,再去学习一门新语言(如日语)。这位语言学家已经具备了普遍的语法知识、词汇结构和语义理解能力。学习新语言时,他不再需要从零开始,而是利用已有的“元能力”快速上手,只需少量针对性的练习就能达到很高的水平。
2025-08-14 19:28:23
425
原创 机器翻译:学习率调度详解
学习率调度是优化神经网络训练的关键技术,通过动态调整学习率提升模型性能。核心思想是训练初期使用较大学习率快速收敛,后期减小学习率精细调整。主流方法包括:线性衰减(简单通用)、指数衰减(前期稳定)、余弦退火(平滑收敛,推荐首选)、周期性学习率(跳出局部最优)和基于性能的调度(自适应调整)。实践建议从余弦退火或ReduceLROnPlateau开始,结合学习率预热提升稳定性。不同框架(PyTorch、TensorFlow)均提供便捷实现方式。选择策略需根据具体任务、模型和数据特点,实验是找到最佳方案的关键。
2025-08-13 21:12:58
836
2
原创 一文掌握BERT模型及在机器翻译中的应用
BERT(Bidirectional Encoder Representations from Transformers) 是由Google在2018年提出的革命性预训练语言模型,
2025-08-13 08:59:22
572
原创 Transformer的编码器与解码器模块深度解析及python实现完整案例
Transformer 是一种基于自注意力机制的神经网络架构,主要由编码器和解码器两部分组成。编码器负责将输入序列转换为包含上下文信息的向量表示,包含多头自注意力机制和前馈神经网络等子层,并使用残差连接和层归一化优化训练。解码器则通过掩码自注意力机制逐步生成目标序列,同时结合编码器的输出信息。模型通过位置编码显式注入位置信息,解决了传统RNN的顺序处理限制。整体架构支持并行计算,适用于机器翻译等序列生成任务。PyTorch提供了官方实现,包含嵌入层、位置编码和Transformer核心模块,最终通过线性层输
2025-08-12 12:07:30
929
2
原创 位置编码(Positional Encoding):为序列注入位置信息的方法详解
本文介绍了Transformer模型中的关键组件——位置编码(Positional Encoding)。由于Transformer的自注意力机制本身不具备处理序列顺序的能力,需要通过位置编码显式注入位置信息。文章详细讲解了两类主流位置编码方法:1)基于正弦/余弦函数的固定编码,通过不同频率的波形组合实现位置表示,具有泛化性强、能处理任意长度序列的优势;2)可学习的位置嵌入,通过训练得到位置表示,虽然实现简单但泛化能力有限。文中还提供了基于PyTorch的正弦位置编码实现代码,展示了如何将位置信息与词嵌入相加
2025-08-12 09:36:32
1188
原创 Transformer模型架构:自注意力机制与多头注意力详解
自注意力机制是Transformer模型的核心组件,通过Query、Key、Value三个向量实现上下文理解,解决了传统RNN的长距离依赖和并行计算问题。其工作流程包括:计算注意力分数、获取注意力权重、生成上下文相关表示。多头注意力在此基础上并行运行多组自注意力,拼接结果后通过线性变换,使模型能同时捕捉语法、语义等多维度信息。这种设计赋予Transformer强大的上下文理解能力和高效计算优势,是自然语言处理领域取得突破的关键技术。
2025-08-12 09:25:11
1342
原创 束搜索(Beam Search):提升解码器生成质量的解码策略及对应python案例
束搜索是一种序列生成任务的解码策略,通过维护多个候选路径(束宽k)来避免贪心搜索的局部最优问题。其核心思想是在每一步扩展时保留k个最优候选序列,通过合并筛选逐步构建结果,直到生成结束符。束宽越大,结果质量越高但计算量也越大。文中提供了纯Python实现的束搜索代码示例,模拟了从初始序列到生成完整句子的过程,并对比了不同束宽的效果。该算法在机器翻译等序列生成任务中能有效提升生成质量。
2025-08-12 09:16:19
1113
原创 机器翻译:一文掌握序列到序列(Seq2Seq)模型(包括手写Seq2Seq模型)
Seq2Seq模型是一种深度学习架构,用于处理序列到序列的转换任务(如机器翻译、文本摘要)。它由编码器和解码器两部分组成:编码器将输入序列压缩为上下文向量,解码器基于该向量逐步生成输出序列。传统模型使用循环神经网络(RNN/LSTM/GRU),但存在长序列信息丢失问题,因此引入注意力机制,使解码器能动态关注输入序列的不同部分。文章还提供了用Python和NumPy实现的简化版Seq2Seq代码,展示其核心工作原理。
2025-08-11 20:17:37
1540
4
原创 机器翻译:Bahdanau注意力和Luong注意力详解
摘要 注意力机制是深度学习中的关键技术,Bahdanau注意力和Luong注意力是两种经典模型。Bahdanau(加性注意力)通过神经网络计算查询与键的兼容性分数,使用解码器前一时刻状态作为Query,计算成本较高但对齐灵活。Luong(乘性注意力)采用点积或其变体计算分数,使用当前解码器状态作为Query,效率更高且参数更少,其Scaled General变体成为现代模型(如Transformer)的基础。对比而言,Luong注意力在大多数任务中表现更优,计算高效且结构简洁,而Bahdanau适用于特殊场
2025-08-11 12:17:59
1001
原创 GRU模型:门控循环单元的原理与优势及Python实现
GRU(门控循环单元)是LSTM的简化变体,通过减少门控数量(仅保留重置门和更新门)实现了与LSTM相近的性能,同时计算效率更高。相比LSTM的三门结构,GRU参数更少、训练更快,在机器翻译等序列任务中表现优异。其核心优势包括:简化结构(合并细胞状态和隐藏状态)、缓解梯度消失问题、在多数任务中与LSTM性能相当甚至更好。GRU适用于编码器-解码器框架,可通过Python实现前向传播过程,典型应用场景包括Seq2Seq模型。实际选择时建议优先尝试GRU,复杂长序列任务再考虑LSTM。
2025-08-10 13:43:35
965
2
原创 RNN与LSTM:循环神经网络在机器翻译中的应用
循环神经网络(RNN)及其变体LSTM是早期神经机器翻译的核心技术。RNN通过循环连接处理序列数据,但面临梯度消失和长距离依赖问题。LSTM引入细胞状态和门控机制,有效解决这些问题,显著提升翻译质量。两者在编码器-解码器框架中发挥重要作用,但存在串行计算和信息瓶颈等局限性。这些不足推动了注意力机制和Transformer模型的发展,最终取代RNN/LSTM成为主流架构。RNN/LSTM奠定了序列建模的基础,其演进历程反映了机器翻译技术的重大突破。
2025-08-10 11:15:52
1189
1
原创 神经机器翻译(NMT)框架:编码器-解码器(Encoder-Decoder)结构详解
编码器-解码器结构是神经机器翻译的基石。它通过“先编码后解码”的两阶段流程,实现了从一种语言到另一种语言的端到端转换。而注意力机制的引入,则如同为这个框架装上了“望远镜”和“放大镜”,使其能够精准地捕捉长距离依赖和动态的词对齐关系,从而将 NMT 的性能提升到了一个全新的高度。
2025-08-10 10:59:24
1249
原创 机器翻译:一文掌握注意力机制(Attention),代码可直接运行
注意力机制是机器翻译中的核心技术,其核心思想是让模型动态关注输入序列中最相关的部分。文章首先介绍了注意力机制受人类视觉注意力的启发,解释了查询、键、值的概念及其优势,包括解决信息瓶颈、提高可解释性和处理长序列的能力。接着详细阐述了注意力机制的数学基础,包括计算公式和权重计算过程。文章还分类介绍了自注意力、交叉注意力和多头注意力等主要类型,以及它们在机器翻译中的应用,特别是在Transformer模型中的实现。最后提供了一个完整的Python实现代码,涵盖了数据预处理、模型构建和训练过程,展示了注意力机制在神
2025-08-09 18:41:04
1082
1
原创 机器翻译:需要了解的数学基础详解
机器翻译作为自然语言处理的核心任务,其数学基础涵盖概率论与统计学、线性代数、微积分、信息论、数值优化和图论等多个领域。概率论支撑统计机器翻译中的不确定性建模;线性代数为词向量表示和神经网络矩阵运算提供基础;微积分用于模型优化和梯度计算;信息论在语言模型评估中发挥关键作用;数值优化解决模型训练问题;图论则应用于翻译格和解码算法。这些数学工具相互配合,共同构成了现代机器翻译系统的理论基础,从早期的统计方法到当前神经网络模型的发展都依赖于这些数学理论的支撑。
2025-08-09 18:02:19
1178
原创 机器翻译中的语言学基础详解(包括包括语法、句法和语义学等)
摘要:机器翻译(MT)依托语法、句法、语义学等语言学理论实现跨语言自动转换。语法层面涉及词性标注、形态分析和生成/依存语法,支撑源语言解析;句法通过成分/依存分析处理跨语言结构差异(如词序调整);语义学则解决一词多义、逻辑表达及跨语言对齐问题。此外,语用学(指代消解、言语行为)影响翻译的语境适应性。当前MT系统(规则型、统计型、神经型及混合系统)均依赖语言学知识优化模型设计,未来通过理论与技术的深度融合将进一步提升翻译质量。
2025-08-09 17:21:50
1227
原创 机器翻译实战:使用Gensim训练中英文词向量模型及可视化
本文介绍了如何使用Gensim库训练中英文词向量模型。主要内容包括:1)导入必要工具包;2)中文和英文文本预处理方法(分词、去标点等);3)Word2Vec模型训练参数设置(向量维度、窗口大小等);4)模型保存与加载;5)词向量应用示例(相似词查找、词相似度计算)。文中提供了完整的代码实现,包括中文使用jieba分词,英文处理使用nltk,并演示了从预处理到模型训练的全流程。最后还给出了一个小规模中文语料的训练示例,展示了模型的基本使用方法。
2025-08-09 17:02:21
996
原创 词向量可视化:用TensorBoard或PCA探索词向量空间
本文介绍了词向量可视化的两种主要方法:TensorBoard和PCA降维。词向量可视化是NLP中探索词向量空间关系的重要技术。TensorBoard通过嵌入映射直观展示词向量,操作步骤包括准备词向量、配置日志和启动可视化。PCA则通过降维将高维词向量转为2D/3D散点图,便于分析词间相似性。文章提供了完整的Python代码示例,包括加载预训练模型、PCA降维和可视化过程。此外,还展示了一个机器翻译案例,涵盖环境配置、数据处理、模型训练和向量可视化全流程,帮助读者理解词向量在具体NLP任务中的应用。
2025-08-09 16:31:32
1187
原创 GloVe词向量:原理详解及用python进行训练和应用GloVe
GloVe模型摘要: GloVe是一种结合全局统计与局部上下文的词向量学习方法。它通过构建词共现矩阵捕获词汇间的统计规律,并设计加权损失函数优化词向量表示。核心思想是将词向量点积与共现概率相关联,使用权重函数平衡高低频词对的影响。相比Word2Vec,GloVe能更好地利用全局信息,在低频词处理上表现更优。实践部分介绍了两种实现方式:使用gensim库训练小型自定义模型,以及加载预训练的大规模GloVe模型。该方法虽存在内存消耗大、静态表示等局限,但在语义保持和训练效率方面具有优势。
2025-08-09 15:57:30
1450
原创 词向量基础:从独热编码到分布式表示的演进
词向量是NLP中将离散词语转化为连续向量的核心技术。本文系统梳理了词向量的演进过程:从古典的独热编码(存在维度灾难和语义鸿沟问题),到基于分布式假说的现代词向量模型(如Word2Vec、GloVe)。重点分析了Word2Vec的Skip-gram和CBOW两种架构,通过预测上下文词来学习低维稠密向量。分布式表示能有效捕捉语义关系,支持向量运算(如"国王-男人+女人≈女王"),解决了传统方法的根本缺陷。演进过程体现了从简单离散表示到复杂连续语义编码的技术飞跃。
2025-08-09 15:38:03
1408
原创 机器翻译:FastText算法详解与Python的完整实现
FastText是由Facebook AI团队提出的词向量模型,在Word2Vec基础上引入字符级N-gram特征,有效解决了未登录词(OOV)问题。其核心思想是将单词分解为字符N-gram(如"apple"分解为<ap,pp,pl,le>),通过组合子词向量表示完整词义。相比Word2Vec,FastText具有处理OOV词、训练速度快、适合形态丰富语言等优势,但会增大模型体积且无法解决一词多义问题。算法架构类似CBOW,通过共享字符N-gram信息实现语义关联。文中提供了
2025-08-09 15:23:27
1150
原创 机器翻译正则化技术详解:防止过拟合的有效方法
机器翻译中的正则化技术是防止模型过拟合的关键手段。主要方法包括:1)Dropout随机丢弃神经元,防止过度依赖特定路径;2)权重衰减(L2正则化)限制权重数值,增强泛化能力;3)标签平滑缓解模型过度自信,提升翻译流畅度;4)早停法在验证集性能下降时终止训练;5)数据增强通过回译等技术扩充数据集。此外,Transformer架构自带的残差连接和层归一化也起到正则化作用。实践表明,组合使用Dropout+权重衰减+早停作为基础配置,配合标签平滑和数据增强,能显著提升模型在测试集上的表现。这些技术共同防止模型简单
2025-08-09 15:03:39
1060
原创 优化器:SGD、Adam、RMSprop等优化算法对比与机器翻译应用
我们将对比最经典的优化器:SGD、Momentum SGD、RMSprop 和 Adam。
2025-08-09 14:40:30
1401
原创 python基础:工作会用到的95%的基础python代码都在这了(万字详解!)
本文是一份Python编程语言的快速参考备忘单,涵盖了Python基础语法和常用数据类型。主要内容包括:Python入门指南(打印、变量声明)、内置数据类型(字符串、数值、列表、元组、集合、字典等)、控制结构(判断、循环)、函数定义、文件处理操作以及字符串操作方法(切片、循环遍历等)。这个备忘单特别适合初学者快速查阅Python基础语法,同时也提供了数据类型转换、f-string格式化字符串等实用技巧。通过简洁的代码示例展示了Python的基本语法规则和典型用法。
2025-08-09 11:16:53
559
原创 一文搞懂神经网络,及在机器翻译中的应用
神经网络是一种模拟人脑神经元工作方式的数学模型,由大量相互连接的节点(神经元)组成,能够通过学习数据中的模式进行预测和分类。其核心构件包括人工神经元(含输入、权重、偏置和激活函数)和网络结构(输入层、隐藏层和输出层)。神经网络通过前向传播获取预测结果,再通过反向传播计算误差并调整权重参数,利用梯度下降等优化算法不断优化模型。主要类型包括前馈神经网络、卷积神经网络(CNN)、循环神经网络(RNN)和长短期记忆网络(LSTM)等。在机器翻译领域,神经网络(如Seq2Seq模型和Transformer架构)通过编
2025-08-09 11:11:40
1441
原创 使用Python将中文语音翻译成英语音频
本文介绍了中文语音翻译成英语音频的实现方法,主要分为三个步骤:语音识别(将中文语音转为文本)、文本翻译(中文转英文)和语音合成(英文文本转音频)。文章详细说明了注意事项,包括音频格式要求(16kHz WAV)、API密钥配置和网络连接等,并提供了完整的Python代码实现,涵盖百度API的语音识别、文本翻译和语音合成功能。代码示例展示了如何构建一个完整的翻译器类,包含异常处理和播放功能,适用于实际应用场景。
2025-08-08 09:44:25
1001
原创 反向传播算法:神经网络训练的核心原理及python实现
本文介绍了反向传播算法的基本原理及其在神经网络训练中的应用。反向传播算法通过计算损失函数对网络权重的梯度,实现参数优化更新,包含前向传播、损失计算、反向传播和参数更新四个核心步骤。文章详细解释了梯度计算的具体实现过程,并分析了深层网络中的梯度消失与爆炸问题及其解决方案。此外,还探讨了反向传播在机器翻译领域的具体应用,特别是编码器-解码器架构和注意力机制中的实现。最后,提供了一个Python实现案例,展示了如何构建和训练一个简单的神经网络,包括前向传播、损失计算、反向传播和参数更新的完整代码实现。
2025-08-08 09:27:58
1384
原创 Word2Vec模型:CBOW与Skip-gram原理及训练实践
Word2Vec是Google提出的词向量生成模型,包含CBOW和Skip-gram两种架构。CBOW通过上下文预测目标词,适合小型数据集;Skip-gram通过目标词预测上下文,对低频词更有效。两者在训练速度、词频处理等方面各有优劣。实践时需注意数据预处理、负采样/层次softmax优化技术,并根据数据集规模选择模型。代码实现展示了基于PyTorch的CBOW和Skip-gram模型构建,包括词汇表处理、数据集生成和模型训练流程。关键参数包括嵌入维度、窗口大小等,合理设置对模型效果至关重要。
2025-08-08 09:12:19
1045
原创 解码算法:维特比算法(Viterbi)在SMT中的应用
维特比算法是一种动态规划算法,常用于隐马尔可夫模型中寻找最优状态序列。本文首先介绍了其在统计机器翻译(SMT)中的应用,包括搜索最优翻译路径、处理短语组合和解码过程。算法具有高效性(O(N²T)复杂度)和全局最优性,但也面临搜索空间大等局限性。随后提供了Python实现代码,通过天气预测示例演示了算法流程,包含初始化概率矩阵、递推计算和路径回溯等步骤。代码实现了观测序列到最可能天气状态的推断,并包含矩阵打印等辅助功能,展示了维特比算法在实际问题中的应用方式。
2025-08-07 19:58:24
955
原创 词对齐技术:IBM Model 1-5原理与实践,和python完整代码实现
IBM Models 1-5是经典的词对齐模型,用于统计机器翻译。Model 1基于词汇翻译概率,忽略位置信息;Model 2增加位置对齐概率;Model 3引入生育率参数处理一对多翻译;Model 4优化生育率模型;Model 5允许词汇移动。文章提供了Python实现代码,包括初始化翻译概率、训练过程和获取翻译概率的方法,展示了IBM Model 1和Model 2的具体实现细节。
2025-08-07 19:46:56
1281
原创 Moses工具的配置和小语种平行语料训练SMT完整实现
本文介绍了Moses统计机器翻译工具的开源安装与配置流程,并详细演示了使用小语种平行语料训练翻译模型的完整步骤。主要内容包括:1) Moses的安装和环境配置;2) 英语-世界语平行语料准备与预处理;3) 语言模型训练与翻译模型构建;4) 翻译测试与BLEU评估方法。该流程虽然基于示例小语料,但可扩展应用于实际小语种翻译任务,特别强调了语料预处理、参数调优等关键环节的注意事项。
2025-08-07 19:23:56
715
原创 语言模型(LM):n-gram模型原理与困惑度(Perplexity)计算详解
N-gram模型是一种基于统计的语言模型,通过马尔可夫假设简化条件概率计算,预测词序列概率。其核心思想是当前词仅依赖前n-1个词,包括Unigram、Bigram和Trigram等不同粒度。模型通过语料库计数构建,但面临数据稀疏问题,需使用加一平滑等技术处理。困惑度(PPL)是评估语言模型性能的关键指标,表示模型预测下一个词的平均不确定程度,值越低表明模型越好。通过一个Bigram模型实例计算测试句子的困惑度约为5.52,展示了N-gram模型的简单高效性,但也凸显了其上下文限制和长距离依赖等局限性。
2025-08-07 18:05:20
1257
原创 翻译模型(TM):基于短语的统计翻译模型(PBSMT)的构建
摘要: 基于短语的统计机器翻译(PBSMT)是统计机器翻译的主流方法,通过将句子分割为短语进行翻译和重组,解决了传统逐词翻译的词序问题。其核心流程包括:语料预处理、词对齐与短语抽取、翻译模型训练(计算短语概率)和语言模型训练。PBSMT优势在于可解释性强、灵活性高,但对齐错误和短语拼接问题可能影响质量。随着神经机器翻译(NMT)的兴起,PBSMT虽被取代,但其对齐、解码等思想仍影响现代NLP。典型工具如Moses Toolkit支持全流程实现。
2025-08-07 18:02:57
1243
用python3实现个人博客系统,脚本可以直接运行 (所用技术:Flask、TinyDB)
2023-06-13
用python3实现AI人脸识别签到打卡系统(压缩包中源码可直接运行)
2023-06-13
用Panda3D开发3D枪战类游戏源码,脚本可以直接运行
2023-06-13
用python3实现民宿信息可视化系统
2023-06-13
用python3实现在线生鲜商城系统,脚本可以直接运行
2023-06-13
用python3实现招聘信息实时数据分析系统,包括数据文件、爬虫文件、部署文件等
2023-06-10
用python3实现房产价格数据可视化分析系统(包括采集房产的脚本、数据可视化脚本)
2023-06-10
用python3实现基于深度学习的AI人脸识别系统,脚本可以直接运行(包括源码文件、数据文件)
2023-06-10
用python3实现动态验证码,脚本可以直接运行
2023-06-08
用python3实现轻松背单词程序,代码可直接运行
2023-06-08
炫酷时钟动态案例,web浏览器打开index.html即可看到动态效果
2023-06-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人