Yolov5/Yolov7 引入CVPR 2023 BiFormer: 基于动态稀疏注意力构建高效金字塔网络架构,对小目标涨点明显

博客介绍了如何在YOLOv5中引入BiFormer,这是一种基于动态稀疏注意力的双层路由方法,旨在提高小目标检测性能。BiFormer通过减少计算和内存开销,实现内容感知的稀疏注意力。实验证明,在PCB缺陷检测任务中,地图精度从0.921提升至0.952。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.BiFormer介绍

 2.基于Yolov5的BiFormer实现

2.1 BiFormer加入common.py中

2.2  BiFormer加入yolo.py中:

2.3 yolov5s_BiLevelRoutingAttention.yaml


1.BiFormer介绍

论文:https://arxiv.org/pdf/2303.08810.pdf

代码:https://github.com/rayleizhu/BiFormer

背景:注意力机制是Vision Transformer的核心构建模块之一,可以捕捉长程依赖关系。然而,由于需要计算所有空间位置之间的成对令牌交互,这种强大的功能会带来巨大的计算负担和内存开销。为了减轻这个问题,一系列工作尝试通过引入手工制作和内容无关的稀疏性到关注力中来解决这个问题,如限制关注操作在局部窗口、轴向条纹或扩张窗口内。

本文方法:本文提出一种动态稀

评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值