涨点技巧:注意力机制---Yolov8引入Resnet_CBAM,CBAM升级版

文章探讨了计算机视觉中不同类型的注意力机制,如通道注意力、空间注意力等,并介绍了CBAM(卷积块注意力模块)和GAM(全局注意力机制)。CBAM结合了通道和空间注意力,而GAM则对这两者进行了不同的处理。ResBlock_CBAM是CBAM在ResNet块中的实现,用于增强特征提取。文章还展示了如何在Yolov8中集成ResBlock_CBAM以提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1.计算机视觉中的注意力机制

一般来说,注意力机制通常被分为以下基本四大类:

通道注意力 Channel Attention

空间注意力机制 Spatial Attention

时间注意力机制 Temporal Attention

分支注意力机制 Branch Attention

1.1.CBAM:通道注意力和空间注意力的集成者

轻量级的卷积注意力模块,它结合了通道和空间的注意力机制模块

论文题目:《CBAM: Convolutional Block Attention Module》
论文地址:  https://arxiv.org/pdf/1807.06521.pdf

上图可以看到,CBAM包含CAM(Channel Attention Module)和SAM(Spartial Attention Module)两个子模块,分别进行通道和空间上的Attention。这样不只能够节约参数和计算力,并且保证了其能够做为即插即用的模块集成到现有的网络架构中去。

1.2 GAM:Global Attention Mechanism

超越CBAM,全新注意力GAM:不计成本提高精度!
论文题目:Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions
论文地址:https://paperswithcode.com/paper/global-attention-mechanism-retain-information

从整体上可以看出,GAM和CBAM注意力机制还是比较相似的,同样是使用了通道注意力机制和空间注意力机制。但是不同的是对通道注意力和空间注意力的处理。
图片

1.3 ResBlock_CBAM

CBAM结构其实就是将通道注意力信息核空间注意力信息在一个block结构中进行运用。

在resnet中实现cbam:即在原始block和残差结构连接前,依次通过channel attention和spatial attention即可。

1.4性能评价

CBAM、GAM实现见博客https://cv2023.blog.csdn.net/article/details/129857671

 2.Yolov8加入ResBlock_CBAM

2.1 ResBlock_CBAM加入modules.py中:

###################### cbam gam   ResBlock_CBAM####     START   by  AI&CV  ###############################
class ChannelAttention(nn.Module):
    # Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet
    def __init__(self, channels: int) -> None:
        super().__init__()
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
        self.act = nn.Sigmoid()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x * self.act(self.fc(self.pool(x)))


class SpatialAttention(nn.Module):
    # Spatial-attention module
    def __init__(self, kernel_size=7):
        super().__init__()
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
        self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.act = nn.Sigmoid()

    def forward(self, x):
        return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))


class CBAM(nn.Module):
    # Convolutional Block Attention Module
    def __init__(self, c1, kernel_size=7):  # ch_in, kernels
        super().__init__()
        self.channel_attention = ChannelAttention(c1)
        self.spatial_attention = SpatialAttention(kernel_size)

    def forward(self, x):
        return self.spatial_attention(self.channel_attention(x))


def channel_shuffle(x, groups=2):  ##shuffle channel
    # RESHAPE----->transpose------->Flatten
    B, C, H, W = x.size()
    out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()
    out = out.view(B, C, H, W)
    return out



class ResBlock_CBAM(nn.Module):
    def __init__(self, in_places, places, stride=1, downsampling=False, expansion=1):
        super(ResBlock_CBAM, self).__init__()
        self.expansion = expansion
        self.downsampling = downsampling

        self.bottleneck = nn.Sequential(
            nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(places),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(places),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1,
                      bias=False),
            nn.BatchNorm2d(places * self.expansion),
        )
        #self.cbam = CBAM(c1=places * self.expansion, c2=places * self.expansion, )
        self.cbam = CBAM(c1=places * self.expansion )

        if self.downsampling:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels=in_places, out_channels=places * self.expansion, kernel_size=1, stride=stride,
                          bias=False),
                nn.BatchNorm2d(places * self.expansion)
            )
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        residual = x
        out = self.bottleneck(x)
        out = self.cbam(out)
        if self.downsampling:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)
        return out


###################### cbam gam   ResBlock_CBAM####     END   by  AI&CV  ###############################

2.2 ResBlock_CBAM加入tasks.py中(相当于yolov5中的yolo.py

from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
                                    Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
                                    GhostBottleneck, GhostConv, Segment, ResBlock_CBAM)

def parse_model(d, ch, verbose=True):函数中

 if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
                 BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x , ResBlock_CBAM):

2.3  ResBlock_CBAM修改对应yaml

# Ultralytics YOLO 🚀, GPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  - [-1, 1, ResBlock_CBAM, [1024]]

  - [[15, 18, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值