工业无监督缺陷检测,提升缺陷检测能力,解决缺陷样品少、不平衡等问题

博客介绍了工业异常检测的挑战,特别是缺乏异常样本和差异小的问题。探讨了yolov5等目标检测算法在工业应用中的局限,并聚焦于无监督异常检测的研究。推荐了anomalib库,它提供了先进的算法和工具,支持实验管理和实时部署,强调了其再现性、可扩展性、模块化和实时性能。文章详细阐述了CFLOW-AD模型,并给出了anomalib的安装与训练步骤,包括数据集格式和训练过程可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 简介

在工业生产中,质量保证是一个很重要的话题, 因此在生产中细小的缺陷需要被可靠的检出。工业异常检出旨在从正常的样本中检测异常的、有缺陷的情况。工业异常检测主要面临的挑战:

  1. 难以获取大量异常样本
  2. 正常样本和异常样本差异较小
  3. 异常的类型不能预先得知

这些挑战使得很难使用传统的分类算法训练,需要提出特殊的方法来应对处理。

同时yolov8、yolov5等前沿先进目标检测算法在工业界的广泛应用,同时也取得了一定效果,但同时存在着一些问题点:1)对于未知的缺陷检测能力不佳,经常会遇到明显的缺陷(但从未出现过的缺陷)存在着漏判的问题点;2)工业界存在着大量良品,极度缺乏不良图片,这导致yolo等算法性能大幅度下降;

因此本博客针对无监督异常检测进行研究,从而提升工业缺陷检测能力。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值