Yolov8小目标检测(1)

本文介绍了使用Yolov8进行红外弱小目标检测的过程,包括数据集的划分和增强,超参数设置及训练。通过对数据集的分析,展示了目标的分布特性,并给出了训练后的性能评估,[email protected] 达到0.755。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  💡💡💡本文目标:通过原始基于yolov8的红外弱小目标检测,训练得到初版模型,进行问题点分析;

💡💡💡Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点

💡💡💡重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!

专栏介绍:

✨✨✨解决小目标检测难点并提升小目标检测性能;

🚀🚀🚀小目标、遮挡物性能提升和创新;

💡💡💡 工业界小目标检测性能提升和部署可行性;

🍉🍉🍉持续更新中,定期更新不同数据集涨点情况;
&

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值