Yolov8-pose关键点检测:Transformer创新 | 卷积化自注意力,共享大卷积核和动态卷积核,引入YOLOv12 Flash Attention思想高效涨点| ICCV2025

 💡💡💡问题点:针对 Transformer 在图像超分辨率(SR)任务中的高计算开销问题,提出了一系列高效解决方案。①我们观察到自注意力在不同层之间存在重复性

💡💡💡我们提出了一种设计策略:仅在每个 Transformer 块的第一层保留自注意力,其余层则替换为我们提出的高效替代模块——卷积注意力(Convolutional Attention,ConvAttn)。为了有效模拟自注意力的长距离建模能力和输入依赖的动态加权机制,ConvAttn 采用了双重机制:

  1. 长距离交互简化:通过在整个网络中共享一个 13×13 的大卷积核,仅作用于部分通道,从而简化自注意力的全局交互过程;

  2. 动态卷积核生成:根据输入特征动态生成卷积核,模拟自注意力的自适应加权特性。

本文贡献总结如下:
• 证明经过精心设计的卷积可以部分替代自注意力,在显著提升效率的同时不牺牲 Transformer 的核心优势。
• 首次将 Flash Attention 成功引入轻量级 SR 任务,通过避免显式存储注意力矩阵,将窗口尺寸扩大至 32×32 而几乎不增加显存。
• 以更简单、高效的方式,在轻量级 SR 任务中充分发挥 Transformer 的优势。

 💡���

<think>好的,用户的问题是关于在使用YOLOv8完成自定义关键点检测模型训练后,如何实现动作识别的方法。我需要先理解整个流程,然后分步骤给出合理的解决方案。 首先,用户已经训练好了关键点检测模型,比如手部或者人体的关键点检测。接下来要做的是动作识别,这通常需要分析关键点的位置变。我需要考虑动作识别的一般方法,可能包括数据准备、特征提取、模型选择等步骤。 动作识别常用的方法有时序模型如LSTM、Transformer,或者3D卷积网络。但结合YOLOv8关键点检测,可能更适合使用时序模型来处理连续的关键点序列。另外,也可以考虑基于规则的方法,比如计算特定角度或距离的变来判断动作,但这种方法可能不够灵活,适用于简单动作。 接下来,我需要参考用户提供的引用内容。引用[1]提到手部检测关键点检测的分阶段方法,这可能意味着关键点数据已经是可用的。引用[2][3]涉及YOLOv8的训练过程,特别是关键点检测的数据集制作训练参数设置。这些信息帮助确认用户已经完成了关键点检测模型的训练,现在需要后续的动作识别部分。 可能的步骤包括: 1. 数据预处理:将检测到的关键点按时间序列整理,可能需要归一或平滑处理。 2. 特征工程:从关键点序列中提取有用的特征,如相对位置、速度、角度等。 3. 选择模型:根据动作的复杂度选择LSTM、Transformer或CNN+RNN的混合模型。 4. 训练动作分类模型:使用标注的动作数据集进行监督学习。 5. 部署集成:将关键点检测模型动作识别模型结合,实时处理视频流。 需要注意的问题包括数据的时间同步、模型的计算效率、不同动作的区分度等。例如,实时应用中,模型需要快速处理每一帧的关键点数据,并累积足够的时间步长来进行预测。 可能用户的需求是实时动作识别,比如手势控制或运动分析,因此需要考虑模型的轻量。此外,用户可能需要具体的代码示例或推荐的框架,比如使用PyTorch构建LSTM模型。 最后,确保回答结构清晰,分步骤说明,并引用提供的参考资料中的相关内容,比如Top-Down方法YOLOv8的训练过程,以增强可信度。</think>以下是使用YOLOv8完成关键点检测后实现动作识别的分步方法: ### 一、动作识别流程设计 1. **双模型协同架构** - 第一阶段:YOLOv8-pose模型实时输出关键点坐标$$(x_1,y_1), (x_2,y_2),...,(x_n,y_n)$$ - 第二阶段:动作识别模型接收时序关键点序列进行行为分类[^2] 2. **数据流示意图** ``` 视频帧 → YOLOv8关键点检测关键点序列缓存 → 动作分类模型 → 动作标签 ``` ### 二、心实现步骤 #### 步骤1:关键点数据预处理 - **时间序列构建** 缓存连续$N$帧(通常取15-30帧)的关键点数据,形成维度为$(N, K, 2)$的张量,其中$K$为关键点数量 - **归一处理** 采用相对坐标归一: $$\hat{x}_i = \frac{x_i - x_{root}}{W}, \quad \hat{y}_i = \frac{y_i - y_{root}}{H}$$ 其中$(x_{root},y_{root})$为基准(如人体髋关节),$W,H$为图像尺寸 #### 步骤2:特征工程 1. **几何特征提取** - 关节角度计算: $$\theta = \arctan\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$$ - 肢体长度比: $$r = \frac{\|p_1 - p_2\|}{\|p_3 - p_4\|}$$ - 运动速度: $$v_t = \|p_t - p_{t-1}\|$$ 2. **时空特征编码** 使用滑动窗口提取特征,窗口大小通常设为1秒(约30帧) #### 步骤3:模型选型与训练 | 模型类型 | | | 适用场景 | |---------|------|------|---------| | LSTM | 擅长时序建模 | 长期依赖问题 | 简单动作 | | Transformer | 全局注意力机制 | 计算资源需求高 | 复杂动作 | | CNN+BiLSTM | 时空特征融合 | 结构较复杂 | 通用场景 | | ST-GCN | 图结构建模 | 需要预定义拓扑 | 人体动作 | **推荐实现方案(以PyTorch为例):** ```python class ActionClassifier(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super().__init__() self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): # x shape: (batch_size, seq_len, features) out, _ = self.lstm(x) out = self.fc(out[:, -1, :]) return out ``` #### 步骤4:系统集成 ```mermaid graph TD A[视频输入] --> B(YOLOv8关键点检测) B --> C{缓存队列<br>达到窗口长度?} C -- Yes --> D[特征提取] D --> E[动作分类] E --> F[输出结果] C -- No --> B ``` ### 三、优策略 1. **实时性优** - 使用多线程/协程分离检测与分类过程 - 采用TensorRT加速YOLOv8推理[^3] 2. **精度提升方法** - 引入注意力机制: $$Attention(Q,K,V)=softmax\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$ - 数据增强:添加时序抖动、空间仿射变换 3. **部署方案** ```python # 伪代码示例 pose_model = YOLO('yolov8n-pose.pt') action_model = load_action_classifier() while cap.isOpened(): ret, frame = cap.read() pose_results = pose_model(frame)[0] keypoints = process_keypoints(pose_results) action_queue.append(keypoints) if len(action_queue) >= WINDOW_SIZE: features = extract_features(action_queue) action = action_model.predict(features) display_action(frame, action) action_queue.pop(0) ``` ### 四、典型应用场景 1. **手势交互系统**(参考手部关键点检测[^1]) 2. **运动姿态分析** 3. **安防异常行为检测**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值