【项目开发篇】013--手把把教你完成一个PowerBuilder小项目之项目发布(六)

本系列文章旨在为大家带来详尽且系统的知识讲解,内容涵盖 PowerBuilder 的安装步骤SQL 的安装步骤及其基本操作方法,同时还精心准备了图文并茂的项目开发实例剖析。无论是渴望踏入编程领域的新手小白,还是正在各高校就读、面临毕业实践课程,急需掌握开发软件技能以完成实践任务的同学们,都能从本系列文章中获取极具针对性与实用性的指导,助力大家轻松开启软件开发学习之旅。   

本篇先介绍一下项目的整体功能,大致了解一下我们做出来是啥样子的~

本项目采用PowerBuider2021开发,数据为SqlServer2008

虽然功能并不多,但麻雀虽小五脏俱全,掌握后就可以入门上手开发了,预祝成功~

目录

一、发布生成可执行文件

二、发布应用

三、遇到的问题及解决

1、运行报找不到DLL文件

2、 制作powerbuilder环境的支持包

四、PowerBuilder小项目源码下载

五、结束语


一、发布生成可执行文件

点击新建按钮,在弹出窗口中选择:Application Wizard

点击OK后,弹出项目应用生成向导窗口,点击next下一步

### 使用 PyQt5 实现 YOLOv8 的相关功能 目前,关于使用 PyQt5 实现 YOLOv8 功能的具体程较少公开发布。然而,可以通过参考已有的 PyQt 和 YOLO 结合的项目来推导实现方法。以下是基于已有项目的分析以及可能的技术路径。 #### 技术背景 YOLOv8 是 Ultralytics 提供的一个改进版本的目标检测模型[^4],其性能和易用性相较于之前的版本有所提升。PyQt5 则是一个流行的 Python GUI 工具包,能够帮助开发者构建跨平台的应用程序。结合两者的关键在于将 YOLOv8 的推理过程集成到 PyQt5 的事件循环中,并通过界面展示检测结果。 --- #### 可能的实现方案 ##### 1. **环境搭建** 首先需要安装必要的依赖库,包括 `ultralytics`(用于加载 YOLOv8 模型)、`opencv-python`(用于图像处理)和 `PyQt5`(用于 GUI 开发)。以下是一个基本的依赖列表: ```bash pip install ultralytics opencv-python-headless pyqt5 ``` ##### 2. **核心逻辑设计** ###### (1) 加载 YOLOv8 模型 利用 `ultralytics` 库中的 `Yolo` 类加载预训练权重文件或自定义训练好的模型。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 替换为你自己的权重文件 ``` ###### (2) 图像推理与结果显示 在 PyQt5 中,通常会使用 `QLabel` 来显示图片。因此,在完成目标检测后,需将 OpenCV 处理后的 BGR 格式图像转换为 Qt 支持的 QImage 格式。 ```python import cv2 from PyQt5.QtGui import QPixmap, QImage def convert_cv_to_qt(cv_image): """ 将 OpenCV 图片转换为 Qt 显示格式 """ rgb_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB) h, w, ch = rgb_image.shape bytes_per_line = ch * w qt_image = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888) return QPixmap.fromImage(qt_image) # 假设 label 是 QLabel 对象 label.setPixmap(convert_cv_to_qt(image)) ``` ###### (3) 集成到 PyQt5 主窗口 创建一个主窗口类继承自 `QWidget` 或 `QMainWindow`,并设置按钮触发推理操作。 ```python from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QPushButton, QLabel class MainWindow(QWidget): def __init__(self): super().__init__() self.init_ui() def init_ui(self): layout = QVBoxLayout() self.label = QLabel("等待上传图片...") layout.addWidget(self.label) btn_detect = QPushButton("执行检测") btn_detect.clicked.connect(self.perform_detection) layout.addWidget(btn_detect) self.setLayout(layout) def perform_detection(self): image_path = "test.jpg" # 替换为实际图片路径 results = model(image_path)[0].plot() # 执行推理并绘制边界框 pixmap = convert_cv_to_qt(results) self.label.setPixmap(pixmap) if __name__ == "__main__": app = QApplication([]) window = MainWindow() window.show() app.exec_() ``` 上述代码展示了如何在一个简单的 PyQt5 界面中调用 YOLOv8 进行推理并将结果显示出来[^5]。 --- #### 注意事项 - 如果计划支持实时视频流检测,则需要引入多线程机制以避免阻塞主线程。 - 调整模型参数时需要注意 GPU/CPU 设备的选择,默认情况下模型会在可用设备上运行。 - 用户交互部分可以根据需求扩展,例如增加滑动条调整置信度阈值等功能。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超越超

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值