◆◆◆ 文献解读 ◆◆◆
特别提示:今天这期内容对追求高分的老师们来说非常友好!!“思路简单 + 容易复现”,绝对是大家首选的性价比之王!主角是我们非常熟悉的“多组学+机器学习+实验验证”,生信 + 实验斩获10分+,快来看看吧!
1. 文章介绍
标题: 新的翻译后修饰学习特征揭示了B4GALT2在肺腺癌中的免疫排斥调节作用
期刊: Journal for ImmunoTherapy of Cancer
影响因子: 10.3
研究思路: 多组学 + 机器学习 + 实验验证
优势: 生信 + 湿实验
发表年份: 2025年5月
2. 研究背景
肺腺癌(LUAD)是肺癌主要亚型,预后差且免疫治疗响应率低。肿瘤免疫微环境(TIME)的复杂性是关键挑战。翻译后修饰(PTMs)通过调控蛋白功能影响肿瘤进展和免疫逃逸,但其在LUAD中的预后价值及机制尚不明确。
本研究旨在构建基于PTMs的机器学习特征(PTMLS),预测LUAD预后及免疫治疗响应,并探索关键基因B4GALT2的免疫调控作用。。
3. 研究思路
数据整合: 整合7个LUAD队列(1231例)和12个免疫治疗队列,筛选PTM相关基因(PTMRGs)。
模型构建: 通过10种机器学习算法构建PTMLS,验证其预后和免疫治疗预测能力。
机制解析: 结合单细胞转录组和空间免疫分析,揭示PTMLS与免疫微环境的关系。
靶点验证: 聚焦B4GALT2,通过临床队列、体外/体内实验验证其促肿瘤和免疫排斥功能。
4. 研究结果
1. PTM相关标志物的研究
-
方法与数据:
-
通过整合TCGA和GTEx数据库的LUAD(n=1231)和正常肺组织(n=110),筛选差异表达的PTM相关基因(PTMRGs),标准为FDR <0.05且log2FC>1。
-
单变量Cox回归分析筛选与预后显著相关的PTMRGs(p<0.05)。
-
-
图表支持:
-
Figure 2A: 火山图显示肿瘤与正常组织间PTMRGs的差异表达(红色为上调基因,黑色为下调基因)。
-
Figure 2B: 森林图展示31个预后相关PTMRGs的HR值和p值(如UBE2C、B4GALT2等)。
-
Figure 2C-D: GO和KEGG富集分析显示PTMRGs主要参与泛素化、组蛋白修饰和糖基化通路。
-
Figure 2E: ssGSEA评分显示肿瘤组织中S-亚硝基化修饰活性显著升高(p<0.001)。
-
Figure 2F-G: 基因组定位和CNV分析显示PTMRGs在染色体3p和8q区域频繁扩增(如B4GALT2位于1q23)。
-
-
结论: PTM相关基因在LUAD中呈现显著表达异质性,并与预后密切相关,提示其可作为潜在生物标志物。
2. PTMLS:新型预后和免疫治疗响应预测模型
-
方法与数据:
-
整合10种机器学习算法(如Lasso、SuperPC)构建PTMLS,基于31个PTMRGs,通过7个独立队列验证。
-
使用TIDE算法和IPS评分评估免疫治疗响应。
-
-
图表支持:
-
Figure 3A: 热图展示不同算法在验证队列中的C-index值(StepCox+SuperPC最优,C-index=0.72)。
-
Figure 3B-H: Kaplan-Meier曲线显示PTMLS在7个队列中的预后分层能力(高PTMLS组生存率显著降低,HR=2.1,p<0.001)。
-
Figure 3I-K: 在3个LUAD免疫治疗队列中,低PTMLS患者响应率更高(AUC=0.85)。
-
Figure 3L-P: 在4个NSCLC免疫治疗队列中,低PTMLS组客观缓解率(ORR)显著提升(p<0.05)。
-
Figure 3Q-T: TCIA数据库分析显示低PTMLS组IPS评分更高(PD-1/CTLA-4联合治疗获益更显著)。
-
-
结论: PTMLS是首个基于PTMs的泛癌预测工具,可精准预测预后和免疫治疗响应。
3. PTMLS预后性能的临床验证
-
方法与数据:
- 通过ROC曲线、PCA分析和C-index对比PTMLS与传统临床参数(如年龄、分期)。
-
图表支持:
-
Figure 4A: C-index柱状图显示PTMLS(C-index=0.72)优于年龄(0.55)、分期(0.60)和EGFR状态(0.58)。
-
Figure 4B: PCA图显示高/低PTMLS组在基因表达谱上显著分离(主成分1和2解释60%变异)。
-
Figure 4C: ROC曲线显示PTMLS在1年、3年、5年生存预测中的AUC值均>0.65。
-
Figure 4D: 雷达图对比PTMLS与98个现有模型的C-index,PTMLS排名第一。
-
-
结论: PTMLS在临床应用中显著优于传统指标,可作为独立预后标志物。
4. 基因组改变与PTMLS状态的关系
-
方法与数据:
- 使用GISTIC 2.0分析PTMLS高低组的CNV和TMB。
-
图表支持:
-
Supplemental Figure S4A-B: 高PTMLS组染色体不稳定性(CIN)评分显著升高(p<0.01)。
-
Supplemental Figure S4C: 突变谱显示高PTMLS组TP53(45% vs. 25%)、MUC16(30% vs. 12%)突变频率更高。
-
Supplemental Figure S4D-G: CNV分析显示高PTMLS组染色体3p缺失和8q扩增频率更高。
-
Supplemental Figure S4J: 生存分析显示低TMB且高PTMLS患者预后最差(p<0.001)。
-
-
结论: PTMLS与基因组不稳定性密切相关,可能通过驱动基因突变促进肿瘤进展。
5. PTMLS对细胞互作和免疫微环境的影响
-
方法与数据:
- 单细胞转录组分析结合CellChat算法解析细胞通讯网络。
-
图表支持:
-
Supplemental Figure S5A-B: t-SNE图显示11个细胞亚群(如肿瘤细胞、T细胞、巨噬细胞)。
-
Supplemental Figure S5C: 点图显示B4GALT2在肿瘤细胞中高表达,ZDHHC5在T细胞中高表达。
-
Supplemental Figure S5H-I: 热图显示高PTMLS组TGF-β和VEGF信号通路显著激活(p<0.01)。
-
Supplemental Figure S5J: 网络图显示高PTMLS组细胞间双向通讯增强(如配体-受体对SPP1-CD44)。
-
-
结论: PTMLS通过增强肿瘤细胞间通讯和免疫抑制信号,塑造“冷肿瘤”微环境。
6. PTMLS作为肿瘤免疫景观的决定因素
-
方法与数据:
- 使用TIMER2.0、ssGSEA和TIDE算法评估免疫浸润。
-
图表支持:
-
Figure 5A: 箱线图显示低PTMLS组CD8+ T细胞、B细胞和NK细胞浸润增加(p<0.05)。
-
Figure 5B: ssGSEA评分显示低PTMLS组干扰素-γ应答和抗原呈递通路激活(p<0.01)。
-
Figure 5C: 热图显示低PTMLS组MHC-II分子(HLA-DRA)上调,高PTMLS组TAP1/TAP2上调。
-
Figure 5D: TIDE评分显示低PTMLS组免疫治疗响应率更高(p<0.001)。
-
Figure 5F: H&E染色显示低PTMLS肿瘤中淋巴细胞浸润更密集。
-
-
结论: PTMLS通过调控抗原呈递和免疫细胞招募,决定肿瘤免疫活性。
7. B4GALT2:LUAD进展和免疫响应的关键因子
-
方法与数据:
- 通过临床队列(n=171)和HPA数据库验证B4GALT2表达与预后的关系。
-
图表支持:
-
Figure 6A: 散点图显示B4GALT2与PTMLS强相关(r=0.82, p<0.001)。
-
Figure 6B-H: Kaplan-Meier曲线显示高B4GALT2表达患者生存期显著缩短(HR=1.62, p=3.9e-08)。
-
Figure 6I-L: HPA免疫组化显示B4GALT2在肿瘤组织中高表达(H-score=180 vs. 正常组织H-score=50)。
-
Figure 6N-O: 散点图显示B4GALT2与CD8A表达呈负相关(R=-0.25, p=1.4e-05)。
-
Figure 6Q: 箱线图显示高B4GALT2组CD8+ T细胞和B细胞浸润减少(p<0.01)。
-
-
结论: B4GALT2是PTMLS的核心基因,通过抑制CD8+ T细胞浸润驱动免疫逃逸。
8. B4GALT2 and CD8+ T cell distribution: clinical implications(B4GALT2与CD8+ T细胞分布的临床意义)
-
方法与数据:
- 根据CD8+ T细胞浸润模式将肿瘤分为“炎症型”、“排斥型”和“荒漠型”。
-
图表支持:
-
Figure 7A: 临床特征表显示“荒漠型”患者淋巴转移率更高(70% vs. 30%)。
-
Figure 7B: 多色免疫荧光图像显示“荒漠型”肿瘤中CD8+ T细胞(绿色)与B4GALT2(红色)空间排斥。
-
Figure 7C-D: Kaplan-Meier曲线显示“荒漠型”患者OS和DFS显著缩短(p<0.0001)。
-
Figure 7E: 箱线图显示“荒漠型”中B4GALT2表达最高(p<0.01)。
-
Figure 7G: 生存分析显示高B4GALT2表达组生存期更短(p=0.033)。
-
-
结论: B4GALT2是“免疫荒漠”表型的关键标志物,与不良预后直接相关。
9. B4GALT2’s role in immune regulation and treatment response(B4GALT2在免疫调控和治疗响应中的作用)
-
方法与数据:
- 体外敲低B4GALT2(A549/H1299细胞)评估增殖能力,体内联合PD-1抗体治疗小鼠模型。
-
图表支持:
-
Figure 8C-D: Western blot和qPCR验证B4GALT2敲低效率(蛋白表达降低70%,p<0.001)。
-
Figure 8E-G: CCK8实验显示B4GALT2敲低后细胞增殖抑制(OD值降低50%,p<0.01);克隆形成实验显示克隆数减少60%(p<0.001)。
-
Figure 8H-J: 小鼠肿瘤生长曲线显示联合治疗组肿瘤体积减少50%(p<0.001)。
-
Figure 8B: 多色免疫荧光显示B4GALT2高表达区域(红色)与CD8+ T细胞(绿色)空间排斥。
-
-
结论: B4GALT2通过促进肿瘤增殖和免疫排斥削弱PD-1疗效,其抑制可逆转此效应。
10. B4GALT2 inhibition potentiates anti-PD-1 response through T cell activation(B4GALT2抑制通过T细胞活化增强抗PD-1响应)
-
方法与数据:
- 流式细胞术分析小鼠肿瘤中CD8+ T细胞表型变化。
-
图表支持:
-
Figure 9A: 柱状图显示联合治疗组总CD8+ T细胞比例增加2倍(p<0.001)。
-
Figure 9B: 流式点图显示联合治疗组活化CD8+ T细胞(CD44+/CD69+/GZMB+)比例显著升高(p<0.001),而初始T细胞(CD62L+)比例下降。
-
-
结论: B4GALT2抑制通过增强T细胞活化和细胞毒性,协同PD-1阻断提升抗肿瘤免疫。
5. 总结
-
核心发现:
-
PTMLS是首个整合多组学PTM特征的预测模型,显著优于现有标志物。
-
B4GALT2作为PTMLS的核心基因,通过糖基化介导免疫排斥,是潜在治疗靶点。
-
-
转化意义:
-
PTMLS可指导LUAD患者分层,低评分患者优先接受免疫检查点抑制剂。
-
B4GALT2抑制剂联合PD-1/PD-L1阻断可能成为新型联合疗法。
-
6. 后话
这篇文章用“多组学 + 机器学习 + 湿实验验证”,生信 + 实验斩获10分+!相较于目前很火的网药/临床分析思路,实操相对会难一些,成本更高,感兴趣的小伙伴们可以自己尝试上手复现。
对多组学分析思路有想法的伙伴们随时可以滴滴我们,从思路设计到个性化分析,我们将为你提供专业辅助,让你的科研之路一路畅行。
关于我们: 我们的团队是领航生信,如果大家想要系统学习常规SCI生信套路和流程或者了解更多生信相关知识,可以在下方公众号链接找到我们~~~
祝大家能够开心学习,轻松学习,在学习的路上少一些坎坷~~~
- 目录部分跳转链接:零基础入门生信转录组数据分析——导读