◆◆◆ 文献解读 ◆◆◆
特别提示:今天这期内容对不追求高分的老师们来说非常友好!!“思路简单 + 容易复现”,绝对是大家首选的性价比之王!主角是我们非常熟悉的“巨噬细胞 + 多组学 + 机器学习”,纯生信斩获5分+,快来看看吧!
1. 文章介绍
标题: 通过生物信息学和机器学习方法鉴定弥漫性大b细胞淋巴瘤相关的M2巨噬细胞相关基因
期刊: Biology Direct
影响因子: 5.7
研究思路: 巨噬细胞 + 多组学 + 机器学习
优势: 纯生信无需实验
发表年份: 2025年5月
2. 研究背景
弥漫性大B细胞淋巴瘤(DLBCL)是最常见的成人淋巴瘤,30-40%患者对R-CHOP疗法耐药或复发。肿瘤微环境(TME)中M2型巨噬细胞通过免疫抑制促进肿瘤进展,但其在DLBCL中的关键基因及机制尚未明确。
本研究结合生物信息学与机器学习筛选M2巨噬细胞相关基因,为DLBCL诊断和预后提供新靶点。
3. 研究思路
1. 数据获取与预处理:
- 从GEO下载4个数据集(GSE9327等),合并278样本(158对照/120 DLBCL)
- 校正批次效应,筛选差异表达基因(DEGs)
2. 免疫微环境分析:
- CIBERSORT量化22种免疫细胞浸润,比较DLBCL与对照组的差异
3. M2巨噬细胞相关基因筛选:
- WGCNA构建共表达网络,鉴定与M2巨噬细胞显著相关的模块(turquoise模块)
- 交叉DEGs与模块基因,获得60个候选基因
4. 机器学习筛选标志物:
- LASSO、SVM-RFE、随机森林三种算法交叉验证,筛选关键诊断基因
5. 模型构建与验证:
- 基于7个基因构建逻辑回归模型和列线图,评估诊断效能
- 生存分析验证基因的预后价值
6. 功能与机制探索:
- GSEA/GSVA分析M2巨噬细胞高/低浸润组的通路富集
4. 研究结果
1. Identification of DEGs in DLBCL (DLBCL中DEGs的鉴定)
-
方法与数据:
- 合并4个GEO数据集(GSE9327等),共278样本(158对照/120 DLBCL)
- 经sva包校正批次效应,limma包筛选DEGs(adj.p.Val < 0.05, |logFC| > 0.585)
-
图表支持:
- Figure 1A: PCA分析显示批次校正前样本按平台聚类
- Figure 1B: 校正后混杂因素消除
- Figure 1C: 火山图显示77个DEGs(42个上调如IL18、FAS;35个下调如SMAD3、CD5)
- Figure 1D: 热图展示差异基因表达模式
-
结论: DLBCL存在核心转录组失调,促炎因子IL18/FAS显著上调,免疫调节基因SMAD3/CD5下调,为后续研究奠定基础。
2. Immune Infiltration Analysis (免疫浸润分析)
-
方法与数据:
- CIBERSORT算法量化22种免疫细胞浸润比例
-
图表支持:
- Figure 2B: 箱线图显示DLBCL组M2巨噬细胞、记忆B细胞显著升高,静息NK细胞、CD8+T细胞显著降低
- Figure 2C: 热图展示免疫细胞互作关系(单核细胞与γδ T细胞正相关cor=0.55)
-
结论: DLBCL微环境呈"免疫荒漠化"特征,M2巨噬细胞驱动免疫抑制。
3. Identification of 60 Potential Genes Associated with M2 Macrophage Infiltration (60个与M2巨噬细胞浸润相关基因的鉴定)
-
方法与数据:
- WGCNA构建共表达网络(软阈值β=8,R²=0.9)
-
图表支持:
- Figure 3C: 模块-性状关系图显示turquoise模块与M2巨噬细胞正相关(cor=0.38, p<0.001)
- Figure 4A: 韦恩图展示60个M2相关候选基因
- Figure 4B-C: GO/KEGG富集分析显示细胞黏附、T细胞激活、p53通路显著富集
- Figure 4D-E: PPI网络鉴定10个枢纽基因(如SMAD3、IL7R)
-
结论: M2巨噬细胞通过调控T细胞功能与p53通路驱动DLBCL。
4. Seven Differentially Expressed Genes Identified as Diagnostic Genes (7个差异表达基因被鉴定为诊断基因)
-
方法与数据:
- 三种机器学习算法(LASSO、SVM-RFE、随机森林)交叉筛选标志物
-
图表支持:
- Figure 5A-F: 三种算法筛选过程(LASSO系数路径、SVM-RFE误差率、随机森林重要性)
- Figure 6A: 韦恩图锁定7个诊断基因(SMAD3、IL7R、IL18、FAS、CD5、CCR7、CSF1R)
- Figure 6B: 染色体定位图显示IL7R/CSF1R(chr5)、IL18/CD5(chr11)基因簇
- Figure 6C: 箱线图展示7个基因在DLBCL与对照组的表达差异
-
结论: 7基因标志物构成DLBCL分子指纹,chr5/chr11基因簇协同失衡是诊断核心依据。
5. Diagnostic Model Construction (诊断模型构建)
-
方法与数据:
- 基于7个基因构建逻辑回归模型及列线图
-
图表支持:
- Figure 7A: ROC曲线显示联合模型AUC=0.921(95%CI:0.885-0.951)
- Figure 7B: 单基因ROC曲线(FAS AUC=0.813,CSF1R AUC=0.728)
- Figure 7D: 校准曲线显示模型预测风险与实际风险高度一致
-
结论: 7基因模型实现高精度诊断(AUC>0.92),列线图可临床转化用于风险评估。
6. Survival and Prognostic Analysis (生存和预后分析)
-
方法与数据:
- 基于GSE181063数据集进行生存分析(KM曲线、Cox回归)
-
图表支持:
- Figure 8A-E: KM曲线显示CD5、FAS、IL7R、IL18、SMAD3低表达组预后差(p<0.01)
- Figure 8F-J: Cox回归显示CD5(HR=0.820)、IL18(HR=0.781)等是独立预后因子
-
结论: CD5/IL18等基因是强力生存预测指标,低表达患者死亡风险增加17-22%。
7. M2 Macrophage Infiltration and Pathway Analysis (M2巨噬细胞浸润及通路分析)
-
方法与数据:
- GSEA-KEGG与GSVA分析M2高/低浸润组通路差异
-
图表支持:
- Figure 9A: GSEA显示M2高浸润组富集DNA修复、氧化磷酸化通路
- Figure 9B: GSEA显示M2低浸润组富集钙信号、Notch通路
- Figure 9C: GSVA热图显示M2高浸润组PPAR信号、嘧啶代谢通路激活
-
结论: M2巨噬细胞通过代谢重编程和DNA修复维持DLBCL恶性表型。
5. 总结
-
核心发现:
- 鉴定7个M2巨噬细胞相关基因(SMAD3等)作为DLBCL诊断和预后标志物
- M2巨噬细胞通过调控细胞黏附、免疫激活及代谢通路促进DLBCL进展
-
临床意义:
- 提供新型诊断模型(AUC>0.92)和预后评估工具
- 为靶向M2巨噬细胞的免疫治疗提供潜在靶点(如IL18、FAS)
6. 后话
这篇文章用 “巨噬细胞 + 多组学 + 机器学习”,纯生信斩获5分+! 相较于目前很火的联合分析思路,实操更简单,性价比更高,感兴趣的小伙伴们可以自己上手复现。
对多组学分析思路有想法的伙伴们随时可以滴滴我们,从思路设计到个性化分析,我们将为你提供专业辅助,让你的科研之路一路畅行。
关于我们: 我们的团队是领航生信,如果大家想要系统学习常规SCI生信套路和流程或者了解更多生信相关知识,可以在下方公众号链接找到我们~~~
祝大家能够开心学习,轻松学习,在学习的路上少一些坎坷~~~
- 目录部分跳转链接:零基础入门生信转录组数据分析——导读